Jan G Korvink

List of Publications by Citations

Source: https://exaly.com/author-pdf/9266532/jan-g-korvink-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 380
 5,644
 38
 59

 papers
 citations
 h-index
 g-index

 450
 6,614
 3.6
 5.88

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
380	Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8446		569
379	Cascaded digital lattice Boltzmann automata for high Reynolds number flow. <i>Physical Review E</i> , 2006 , 73, 066705	2.4	216
378	A hyperpolarized equilibrium for magnetic resonance. <i>Nature Communications</i> , 2013 , 4, 2946	17.4	107
377	Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2008 , 21, 5-14	2.8	107
376	Cyanobacteria use micro-optics to sense light direction. <i>ELife</i> , 2016 , 5,	8.9	87
375	A fully MEMS-compatible process for 3D high aspect ratio micro coils obtained with an automatic wire bonder. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 015021	2	83
374	Inkjet printed, conductive, 25 th wide silver tracks on unstructured polyimide. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2009 , 206, 1626-1630	1.6	79
373	Terahertz metamaterials fabricated by inkjet printing. <i>Applied Physics Letters</i> , 2009 , 95, 251107	3.4	76
372	4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. <i>Magnetic Resonance in Medicine</i> , 2014 , 71, 1542-53	4.4	71
371	Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9155		69
370	Review: Automatic Model Reduction for Transient Simulation of MEMS-based Devices. <i>Sensors Update</i> , 2002 , 11, 3-33		67
369	CD-Based Microfluidics for Primary Care in Extreme Point-of-Care Settings. <i>Micromachines</i> , 2016 , 7,	3.3	67
368	Structure topology optimization: fully coupled level set method via FEMLAB. <i>Structural and Multidisciplinary Optimization</i> , 2005 , 29, 407-417	3.6	66
367	Efficient optimization of transient dynamic problems in MEMS devices using model order reduction. <i>Journal of Micromechanics and Microengineering</i> , 2005 , 15, 822-832	2	61
366	Microscale nuclear magnetic resonance: a tool for soft matter research. Soft Matter, 2012, 8, 10583	3.6	59
365	Dynamic electro-thermal simulation of microsystems review. <i>Journal of Micromechanics and Microengineering</i> , 2005 , 15, R17-R31	2	59
364	On-chip three dimensional microcoils for MRI at the microscale. <i>Lab on A Chip</i> , 2010 , 10, 1387-90	7.2	58

(2010-2018)

363	Should patients with brain implants undergo MRI?. Journal of Neural Engineering, 2018, 15, 041002	5	56
362	A factorized central moment lattice Boltzmann method. <i>European Physical Journal: Special Topics</i> , 2009 , 171, 55-61	2.3	55
361	Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. <i>Journal of Magnetic Resonance Imaging</i> , 2011 , 33, 839-46	5.6	53
360	Microfluidic laboratories for C. elegans enhance fundamental studies in biology. <i>RSC Advances</i> , 2014 , 4, 4691-4709	3.7	52
359	The potential of paper-based diagnostics to meet the ASSURED criteria RSC Advances, 2018, 8, 34012-	3 4 . 9 34	52
358	Prospective motion correction with continuous gradient updates in diffusion weighted imaging. <i>Magnetic Resonance in Medicine</i> , 2012 , 67, 326-38	4.4	51
357	. IEEE Sensors Journal, 2011 , 11, 107-113	4	51
356	MEMS: A Practical Guide to Design, Analysis, and Applications 2006 ,		50
355	Inkjet technology for crystalline silicon photovoltaics. Advanced Materials, 2015, 27, 599-626	24	49
354	Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2007 , 129, 1198-1203	3	45
353	Unconventional applications of wire bonding create opportunities for microsystem integration. Journal of Micromechanics and Microengineering, 2013 , 23, 083001	2	44
352	Lab on a chip phased-array MR multi-platform analysis system. <i>Lab on A Chip</i> , 2012 , 12, 495-502	7.2	43
351	Miniaturized Fourier Transform Spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator. <i>Sensors and Actuators A: Physical</i> , 2005 , 123-124, 459-	469	43
350	Adaptive moving mesh level set method for structure topology optimization. <i>Engineering Optimization</i> , 2008 , 40, 529-558	2	42
349	A dissipative particle dynamics model of carbon nanotubes. <i>Molecular Simulation</i> , 2008 , 34, 737-748	2	42
348	Modeling, Simulation, and Optimization of Electrowetting. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 2006 , 25, 234-247	2.5	42
347	Contactless NMR spectroscopy on a chip. <i>Analytical Chemistry</i> , 2012 , 84, 3696-702	7.8	41
346	An MRI receiver coil produced by inkjet printing directly on to a flexible substrate. <i>IEEE Transactions on Medical Imaging</i> , 2010 , 29, 482-7	11.7	41

345	Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 2005 , 24, 1838-1847	2.5	41
344	Model Order Reduction for Large Scale Engineering Models Developed in ANSYS. <i>Lecture Notes in Computer Science</i> , 2006 , 349-356	0.9	39
343	Polydimethylsiloxane bilayer films with an embedded spontaneous curvature. <i>Soft Matter</i> , 2016 , 12, 45-52	3.6	38
342	Electrostatic aluminum micromirrors using double-pass metallization. <i>Journal of Microelectromechanical Systems</i> , 1997 , 6, 126-135	2.5	38
341	Determination of the thermal conductivity of CMOS IC polysilicon. <i>Sensors and Actuators A: Physical</i> , 1994 , 41, 161-164	3.9	38
340	Heteronuclear Micro-Helmholtz Coil Facilitates Jim-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips. <i>PLoS ONE</i> , 2016 , 11, e0146384	3.7	38
339	SOLIDIS: a tool for microactuator simulation in 3-D. <i>Journal of Microelectromechanical Systems</i> , 1997 , 6, 70-82	2.5	36
338	Micromachined Mid-Infrared Emitter for Fast Transient Temperature Operation for Optical Gas Sensing Systems. <i>IEEE Sensors Journal</i> , 2010 , 10, 353-362	4	35
337	Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. <i>Journal of Micromechanics and Microengineering</i> , 2014 , 24, 034004	2	34
336	Bottom-up coarse-graining of a simple graphene model: the blob picture. <i>Journal of Chemical Physics</i> , 2011 , 134, 064106	3.9	34
335	Structural optimization of a large-displacement electromagnetic Lorentz force microactuator for optical switching applications. <i>Journal of Micromechanics and Microengineering</i> , 2004 , 14, 1585-1596	2	34
334	Error indicators for fully automatic extraction of heat-transfer macromodels for MEMS. <i>Journal of Micromechanics and Microengineering</i> , 2005 , 15, 430-440	2	34
333	Molecular MRI in the Earth's Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 5670-7	3.4	33
332	Reproduction of motion artifacts for performance analysis of prospective motion correction in MRI. <i>Magnetic Resonance in Medicine</i> , 2014 , 71, 182-90	4.4	33
331	A Fully Adaptive Scheme for Model Order Reduction Based on Moment Matching. <i>IEEE Transactions on Components, Packaging and Manufacturing Technology</i> , 2015 , 5, 1872-1884	1.7	33
330	Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data. <i>Magnetic Resonance in Medicine</i> , 2014 , 72, 33-40	4.4	33
329	Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method. <i>Microfluidics and Nanofluidics</i> , 2017 , 21, 1	2.8	32
328	Evolution of Glassy Carbon Microstructure: In Situ Transmission Electron Microscopy of the Pyrolysis Process. <i>Scientific Reports</i> , 2018 , 8, 16282	4.9	32

(2016-1996)

327	Enhanced multipole acceleration technique for the solution of large Poisson computations. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 1996 , 15, 1541-1546	2.5	31
326	Parameter preserving model order reduction for MEMS applications. <i>Mathematical and Computer Modelling of Dynamical Systems</i> , 2011 , 17, 297-317	1	30
325	Reduced order fully coupled structural coustic analysis via implicit moment matching. <i>Applied Mathematical Modelling</i> , 2009 , 33, 4097-4119	4.5	30
324	Variable aperture stop based on the design of a single chamber silicone membrane lens with integrated actuation. <i>Optics Letters</i> , 2011 , 36, 2032-4	3	28
323	PROPERTIES OF THE CASCADED LATTICE BOLTZMANN AUTOMATON. <i>International Journal of Modern Physics C</i> , 2007 , 18, 455-462	1.1	28
322	Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform. <i>Biosensors and Bioelectronics</i> , 2018 , 109, 214-223	11.8	27
321	Bubble functions for the lattice Boltzmann method and their application to grid refinement. <i>European Physical Journal: Special Topics</i> , 2009 , 171, 173-179	2.3	27
320	Microfabricated inserts for magic angle coil spinning (MACS) wireless NMR spectroscopy. <i>PLoS ONE</i> , 2012 , 7, e42848	3.7	26
319	Printing and preparation of integrated optical waveguides for optronic sensor networks. <i>Mechatronics</i> , 2016 , 34, 119-127	3	25
318	Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance. <i>Journal of Micromechanics and Microengineering</i> , 2014 , 24, 045021	2	25
317	Micro powder injection molding: process characterization and modeling. <i>Microsystem Technologies</i> , 2006 , 12, 941-946	1.7	25
316	Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance. <i>Science Advances</i> , 2017 , 3, eaao5242	14.3	24
315	Flexographic and Inkjet Printing of Polymer Optical Waveguides for Fully Integrated Sensor Systems. <i>Procedia Technology</i> , 2014 , 15, 521-529		24
314	Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2016 , 472, 20150835	2.4	24
313	Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2015 , 218, 16-26	2.7	23
312	Ethanolamine-assisted synthesis of size-controlled indium tin oxide nanoinks for low temperature solution deposited transparent conductive films. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11464-11470	07.1	23
311	Custom-Designed Glassy Carbon Tips for Atomic Force Microscopy. <i>Micromachines</i> , 2017 , 8,	3.3	23
310	Tailored probes for atomic force microscopy fabricated by two-photon polymerization. <i>Applied Physics Letters</i> , 2016 , 109, 063101	3.4	23

309	Hydrodynamic particle focusing design using fluid-particle interaction. <i>Biomicrofluidics</i> , 2013 , 7, 54104	3.2	22
308	MST MEMS model order reduction: Requirements and benchmarks. <i>Linear Algebra and Its Applications</i> , 2006 , 415, 469-498	0.9	22
307	Parahydrogen based NMR hyperpolarisation goes micro: an alveolus for small molecule chemosensing. <i>Lab on A Chip</i> , 2019 , 19, 503-512	7.2	21
306	Simulation of micro powder injection moulding: Powder segregation and yield stress effects during form filling. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 2525-2534	6	21
305	High aspect ratio PMMA posts and characterization method for micro coils manufactured with an automatic wire bonder. <i>Sensors and Actuators A: Physical</i> , 2009 , 156, 328-333	3.9	21
304	Pyrolysis-induced shrinking of three-dimensional structures fabricated by two-photon polymerization: experiment and theoretical model. <i>Microsystems and Nanoengineering</i> , 2019 , 5, 38	7.7	20
303	Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy. <i>ELife</i> , 2017 , 6,	8.9	20
302	Effect of cannula position in the thoracic aorta with continuous left ventricular support: four-dimensional flow-sensitive magnetic resonance imaging in an in vitro model. <i>European Journal of Cardio-thoracic Surgery</i> , 2013 , 44, 551-8	3	20
301	Computationally efficient and stable order reduction methods for a large-scale model of MEMS piezoelectric energy harvester. <i>Microelectronics Reliability</i> , 2015 , 55, 747-757	1.2	19
300	Miniaturization limits of piezoresistive MEMS accelerometers. <i>Microsystem Technologies</i> , 2009 , 15, 1835	5-11. 8 44	19
300 299	Miniaturization limits of piezoresistive MEMS accelerometers. <i>Microsystem Technologies</i> , 2009 , 15, 1835 Validation of X-ray lithography and development simulation system for moving mask deep X-ray lithography. <i>Journal of Microelectromechanical Systems</i> , 2006 , 15, 159-168	5-11. 8 444 2.5	19
	Validation of X-ray lithography and development simulation system for moving mask deep X-ray	,	
299	Validation of X-ray lithography and development simulation system for moving mask deep X-ray lithography. <i>Journal of Microelectromechanical Systems</i> , 2006 , 15, 159-168 Electrifying the disk: a modular rotating platform for wireless power and data transmission for Lab	2.5	19
299 298	Validation of X-ray lithography and development simulation system for moving mask deep X-ray lithography. <i>Journal of Microelectromechanical Systems</i> , 2006 , 15, 159-168 Electrifying the disk: a modular rotating platform for wireless power and data transmission for Lab on a disk application. <i>Lab on A Chip</i> , 2015 , 15, 2584-7 Vapour processed self-rolled poly(dimethylsiloxane) microcapillaries form microfluidic devices with	2.5 7.2	19
299 298 297	Validation of X-ray lithography and development simulation system for moving mask deep X-ray lithography. <i>Journal of Microelectromechanical Systems</i> , 2006 , 15, 159-168 Electrifying the disk: a modular rotating platform for wireless power and data transmission for Lab on a disk application. <i>Lab on A Chip</i> , 2015 , 15, 2584-7 Vapour processed self-rolled poly(dimethylsiloxane) microcapillaries form microfluidic devices with engineered inner surface. <i>Lab on A Chip</i> , 2013 , 13, 3827-31 Acceleration of MRI of the vocal tract provides additional insight into articulator modifications.	7.2 7.2	19 18 18
299 298 297 296	Validation of X-ray lithography and development simulation system for moving mask deep X-ray lithography. <i>Journal of Microelectromechanical Systems</i> , 2006 , 15, 159-168 Electrifying the disk: a modular rotating platform for wireless power and data transmission for Lab on a disk application. <i>Lab on A Chip</i> , 2015 , 15, 2584-7 Vapour processed self-rolled poly(dimethylsiloxane) microcapillaries form microfluidic devices with engineered inner surface. <i>Lab on A Chip</i> , 2013 , 13, 3827-31 Acceleration of MRI of the vocal tract provides additional insight into articulator modifications. <i>Journal of Magnetic Resonance Imaging</i> , 2015 , 42, 925-35 Characterization of a 3D MEMS fabricated micro-solenoid at 9.4 T. <i>Journal of Magnetic Resonance</i> ,	7.2 7.2 5.6	19 18 18
299 298 297 296	Validation of X-ray lithography and development simulation system for moving mask deep X-ray lithography. <i>Journal of Microelectromechanical Systems</i> , 2006 , 15, 159-168 Electrifying the disk: a modular rotating platform for wireless power and data transmission for Lab on a disk application. <i>Lab on A Chip</i> , 2015 , 15, 2584-7 Vapour processed self-rolled poly(dimethylsiloxane) microcapillaries form microfluidic devices with engineered inner surface. <i>Lab on A Chip</i> , 2013 , 13, 3827-31 Acceleration of MRI of the vocal tract provides additional insight into articulator modifications. <i>Journal of Magnetic Resonance Imaging</i> , 2015 , 42, 925-35 Characterization of a 3D MEMS fabricated micro-solenoid at 9.4 T. <i>Journal of Magnetic Resonance</i> , 2011 , 208, 20-6	7.2 7.2 5.6	19 18 18 18

(2013-2017)

291	One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications. Journal of Magnetic Resonance Imaging, 2017 , 46, 94-101	5.6	17
290	Elastic reversible valves on centrifugal microfluidic platforms. <i>Lab on A Chip</i> , 2019 , 19, 1090-1100	7.2	17
289	Fast PRF-based MR thermometry using double-echo EPI: in vivo comparison in a clinical hyperthermia setting. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2015 , 28, 305-14	2.8	17
288	Wire bonded 3D coils render air core microtransformers competitive. <i>Journal of Micromechanics and Microengineering</i> , 2013 , 23, 114020	2	17
287	An error indicator and automatic adaptive meshing for electrostatic boundary element simulations. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 1997 , 16, 1439-1446	2.5	17
286	Simulation aspects of a thermal accelerometer. Sensors and Actuators A: Physical, 1996, 55, 3-6	3.9	17
285	Improving the robustness of 3D turbo spin echo imaging to involuntary motion. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2015 , 28, 329-45	2.8	16
284	Closed circuit MR compatible pulsatile pump system using a ventricular assist device and pressure control unit. <i>Magnetic Resonance in Medicine</i> , 2012 , 67, 258-68	4.4	16
283	Two-Photon Nanolithography Enhances the Performance of an Ionic Liquid P olymer Composite Sensor. <i>Advanced Functional Materials</i> , 2015 , 25, 1683-1693	15.6	16
282	Solvent-free inkjet printing process for the fabrication of conductive, transparent, and flexible ionic liquid-polymer gel structures. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2012 , 50, 38-46	2.6	16
281	3D Carbon Scaffolds for Neural Stem Cell Culture and Magnetic Resonance Imaging. <i>Advanced Healthcare Materials</i> , 2018 , 7, 1700915	10.1	15
280	Topology optimization of metal nanostructures for localized surface plasmon resonances. <i>Structural and Multidisciplinary Optimization</i> , 2016 , 53, 967-972	3.6	15
279	Discrete element study of viscous flow in magnetorheological fluids. <i>Rheologica Acta</i> , 2014 , 53, 417-443	32.3	15
278	Polymer Coated Capacitive Microintegrated Gas Sensor		15
277	Inversely designed micro-textures for robust Cassie B axter mode of super-hydrophobicity. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2018 , 341, 113-132	5.7	15
276	Efficient calculation of the mutual inductance of arbitrarily oriented circular filaments via a generalisation of the Kalantarov-Zeitlin method. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 483, 10-20	2.8	14
275	Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips. <i>Biomicrofluidics</i> , 2014 , 8, 024101	3.2	14
274	Subspace recycling accelerates the parametric macro-modeling of MEMS. <i>International Journal for Numerical Methods in Engineering</i> , 2013 , 94, 84-110	2.4	14

273	Complex three-dimensional high aspect ratio microfluidic network manufactured in combined PerMX dry-resist and SU-8 technology. <i>Biomicrofluidics</i> , 2011 , 5, 34111-3411110	3.2	14
272	Miniaturization of fluorescence sensing in optofluidic devices. <i>Microfluidics and Nanofluidics</i> , 2020 , 24, 1	2.8	14
271	Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree. <i>Scientific Reports</i> , 2016 , 6, 32685	4.9	13
270	Levitating Micro-Actuators: A Review. <i>Actuators</i> , 2018 , 7, 17	2.4	13
269	Stable dynamics of micro-machined inductive contactless suspensions. <i>International Journal of Mechanical Sciences</i> , 2017 , 131-132, 753-766	5.5	13
268	Printable poly(methylsilsesquioxane) dielectric ink and its application in solution processed metal oxide thin-film transistors. <i>RSC Advances</i> , 2015 , 5, 20924-20930	3.7	13
267	Inkjet Ink Formulations. Advanced Micro & Nanosystems, 2012, 173-189		13
266	. Journal of Microelectromechanical Systems, 2011 , 20, 466-475	2.5	13
265	Integrated process simulation of primary shaping: multi scale approaches. <i>Microsystem Technologies</i> , 2008 , 14, 1789-1796	1.7	13
264	Thermostat with a local heat-bath coupling for exact energy conservation in dissipative particle dynamics. <i>Physical Review E</i> , 2006 , 73, 037701	2.4	13
263	A two-sided Arnoldi algorithm with stopping criterion and MIMO selection procedure. <i>Mathematical and Computer Modelling of Dynamical Systems</i> , 2005 , 11, 79-93	1	13
262	An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2015 , 28, 459-72	2.8	12
261	The eLoaD platform endows centrifugal microfluidics with on-disc power and communication. <i>Biosensors and Bioelectronics</i> , 2018 , 117, 464-473	11.8	12
260	"Small is beautiful" in NMR. Journal of Magnetic Resonance, 2019, 306, 112-117	3	12
259	Theoretical design of gradient coils with minimum power dissipation: accounting for the discretization of current density into coil windings. <i>Journal of Magnetic Resonance</i> , 2013 , 235, 85-94	3	12
258	Design of high stroke electrostatic micropumps: a charge control approach with ring electrodes. <i>Microsystem Technologies</i> , 2011 , 17, 165-173	1.7	12
257	Process for the fabrication of hollow core solenoidal microcoils in borosilicate glass. <i>Journal of Micromechanics and Microengineering</i> , 2008 , 18, 075002	2	12
256	Design and characterization of in-plane silicon stress sensors with isotropic sensitivity 2008 ,		12

(2008-2005)

255	Connecting heat transfer macromodels for array MEMS structures. <i>Journal of Micromechanics and Microengineering</i> , 2005 , 15, 1205-1214	2	12
254	Magnetic Lenz lenses improve the limit-of-detection in nuclear magnetic resonance. <i>PLoS ONE</i> , 2017 , 12, e0182779	3.7	12
253	Polymer Magnetic Composite Core Boosts Performance of Three-Dimensional Micromachined Inductive Contactless Suspension. <i>IEEE Magnetics Letters</i> , 2016 , 7, 1-3	1.6	12
252	Glassy carbon microelectrodes minimize induced voltages, mechanical vibrations, and artifacts in magnetic resonance imaging. <i>Microsystems and Nanoengineering</i> , 2019 , 5, 61	7.7	12
251	Functional screen printed radio frequency identification tags on flexible substrates, facilitating low-cost and integrated point-of-care diagnostics. <i>Flexible and Printed Electronics</i> , 2018 , 3, 025002	3.1	11
250	Self-consistent adjoint analysis for topology optimization of electromagnetic waves. <i>Journal of Computational Physics</i> , 2018 , 361, 353-376	4.1	11
249	Microfluidic Chips for Life Sciences-A Comparison of Low Entry Manufacturing Technologies. <i>Small</i> , 2019 , 15, e1901956	11	11
248	Designing MR shim arrays with irregular coil geometry: theoretical considerations. <i>IEEE Transactions on Biomedical Engineering</i> , 2014 , 61, 1614-20	5	11
247	Three-dimensional microcoils as terahertz metamaterial with electric and magnetic response. <i>Applied Physics Letters</i> , 2010 , 97, 261105	3.4	11
246	Parametric Model Reduction for Fast Simulation of Cyclic Voltammograms. Sensor Letters, 2006 , 4, 165	-173	11
		.0.9	
245	Novel selective TOCSY method enables NMR spectral elucidation of metabolomic mixtures. <i>Journal of Magnetic Resonance</i> , 2016 , 272, 147-157	3	11
245 244			11
	of Magnetic Resonance, 2016 , 272, 147-157 Phased-array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T. <i>Skin</i>	3	
244	of Magnetic Resonance, 2016, 272, 147-157 Phased-array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T. Skin Research and Technology, 2015, 21, 61-8 Implementation of an in-field CMOS frequency division multiplexer for 9.4 T magnetic resonance	3	10
244	Of Magnetic Resonance, 2016, 272, 147-157 Phased-array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T. Skin Research and Technology, 2015, 21, 61-8 Implementation of an in-field CMOS frequency division multiplexer for 9.4 T magnetic resonance applications. International Journal of Circuit Theory and Applications, 2015, 43, 1861-1878 Microtransformer-Based Isolated Signal and Power Transmission. IEEE Transactions on Power	3 1.9	10
244 243 242	Phased-array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T. Skin Research and Technology, 2015, 21, 61-8 Implementation of an in-field CMOS frequency division multiplexer for 9.4 T magnetic resonance applications. International Journal of Circuit Theory and Applications, 2015, 43, 1861-1878 Microtransformer-Based Isolated Signal and Power Transmission. IEEE Transactions on Power Electronics, 2012, 27, 3996-4004 3D solenoidal microcoil arrays with CMOS integrated amplifiers for parallel MR imaging and	3 1.9	10
244243242241	Phased-array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T. Skin Research and Technology, 2015, 21, 61-8 Implementation of an in-field CMOS frequency division multiplexer for 9.4 T magnetic resonance applications. International Journal of Circuit Theory and Applications, 2015, 43, 1861-1878 Microtransformer-Based Isolated Signal and Power Transmission. IEEE Transactions on Power Electronics, 2012, 27, 3996-4004 3D solenoidal microcoil arrays with CMOS integrated amplifiers for parallel MR imaging and spectroscopy 2011, Low cost fabrication and assembly process for re-usable 3D polydimethylsiloxane (PDMS)	3 1.9 2 7.2	10 10 10

237	Hollow microcoils made possible with external support structures manufactured with a two-solvent process. <i>Journal of Micromechanics and Microengineering</i> , 2016 , 26, 065002	2	10
236	A microwave resonator integrated on a polymer microfluidic chip. <i>Journal of Magnetic Resonance</i> , 2016 , 270, 169-175	3	10
235	Mixing mechanism of a straight channel micromixer based on light-actuated oscillating electroosmosis in low-frequency sinusoidal AC electric field. <i>Microfluidics and Nanofluidics</i> , 2021 , 25, 1	2.8	10
234	Bio-inspired variable imaging system simplified to the essentials: modelling accommodation and gaze movement. <i>Optics Express</i> , 2015 , 23, 929-42	3.3	9
233	Microarchitectured Carbon Structures as Innovative Tissue-Engineering Scaffolds. <i>Advanced Engineering Materials</i> , 2020 , 22, 2000083	3.5	9
232	Using artificial reaction force to design compliant mechanism with multiple equality displacement constraints. <i>Finite Elements in Analysis and Design</i> , 2009 , 45, 555-568	2.2	9
231	IC MEMS microtransducers		9
230	Spatial scanning hyperspectral imaging combining a rotating slit with a Dove prism. <i>Optics Express</i> , 2019 , 27, 20290-20304	3.3	9
229	An NMR-compatible microfluidic platform enabling electrochemistry. <i>Lab on A Chip</i> , 2020 , 20, 3202-321	2 7.2	9
228	Fast prototyping of microtubes with embedded sensing elements made possible with an inkjet printing and rolling process. <i>Journal of Micromechanics and Microengineering</i> , 2018 , 28, 025003	2	9
227	Production of self-immobilised enzyme microspheres using microfluidics. <i>Process Biochemistry</i> , 2018 , 69, 75-81	4.8	8
226	Ink-jet printed fluorescent materials as light sources for planar optical waveguides on polymer foils. <i>Optical Engineering</i> , 2016 , 55, 107107	1.1	8
225	A novel passive micromixer with modified asymmetric lateral wall structures. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2018 , 13, e2202	1.3	8
224	Design multiple-layer gradient coils using least-squares finite element method. <i>Structural and Multidisciplinary Optimization</i> , 2014 , 49, 523-535	3.6	8
223	Optimization MRI Cylindrical Coils Using Discretized Stream Function With High Order Smoothness. <i>IEEE Transactions on Magnetics</i> , 2012 , 48, 1179-1188	2	8
222	Relevance of the Implementation of Teeth in Three-Dimensional Vocal Tract Models. <i>Journal of Speech, Language, and Hearing Research</i> , 2017 , 60, 2379-2393	2.8	8
221	A comparison of Lenz lenses and LC resonators for NMR signal enhancement 2017 , 47B, e21357		8
220	Efficient Reliability-Based Design Optimization for Microelectromechanical Systems. <i>IEEE Sensors Journal</i> , 2010 , 10, 1383-1390	4	8

219	Simulation of Anisotropic Chemical Etching of Single Crystalline Silicon using Cellular-Automata. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2004 , 124, 7-13	0.2	8
218	Equivalent circuit model of resistive IC sensors derived with the box integration method. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 1999 , 18, 1000-1013	2.5	8
217	Thermomechanical modeling of an actuated micromirror. <i>Sensors and Actuators A: Physical</i> , 1995 , 47, 632-636	3.9	8
216	Polyaramid-Based Flexible Antibacterial Coatings Fabricated Using Laser-Induced Carbonization and Copper Electroplating. <i>ACS Applied Materials & Electroplation</i> (12, 53193-53205)	9.5	8
215	Ink-jet printed optical waveguides. Flexible and Printed Electronics, 2017, 2, 045003	3.1	7
214	Ink-jet printing technology enables self-aligned mould patterning for electroplating in a single step. <i>Journal of Micromechanics and Microengineering</i> , 2015 , 25, 065015	2	7
213	Modeling a Pull-In Instability in Micro-Machined Hybrid Contactless Suspension. <i>Actuators</i> , 2018 , 7, 11	2.4	7
212	In vivo MRI with Concurrent Excitation and Acquisition using Automated Active Analog Cancellation. <i>Scientific Reports</i> , 2018 , 8, 10631	4.9	7
211	Development and Characterization of An Unshielded PatLoc Gradient Coil for Human Head Imaging 2013 , 43, 111-125		7
210	Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 2320-8	3	7
209	Dynamic optimization of valveless micropump 2011 ,		7
208	Fast transient temperature operating micromachined emitter for mid-infrared optical gas sensing systems: design, fabrication, characterization and optimization. <i>Microsystem Technologies</i> , 2010 , 16, 745	5-754	7
207	Wireless colorimetric readout to enable resource-limited point-of-care. <i>Lab on A Chip</i> , 2019 , 19, 3344-33	3 <i>5</i> 32	6
206	Broadband and multi-resonant sensors for NMR. <i>Progress in Nuclear Magnetic Resonance Spectroscopy</i> , 2019 , 112-113, 34-54	10.4	6
205	Resonatory Properties in Professional Tenors Singing Above the Passaggio. <i>Acta Acustica United With Acustica</i> , 2016 , 102, 298-306	1.5	6
204	A Comparison of Different Methods to Generate Tooth Surface Models Without Applying Ionizing Radiation for Digital 3-Dimensional Image Fusion With Magnetic Resonance Imaging-Based Data of the Head and Neck Region. <i>Journal of Computer Assisted Tomography</i> , 2015 , 39, 882-9	2.2	6
203	Overview of Inkjet-Based Micromanufacturing. Advanced Micro & Nanosystems, 2012, 1-17		6
202	Three-dimensional flow characteristics in ventricular assist devices: impact of valve design and operating conditions. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2011 , 142, 1019-26	1.5	6

201	A non-local extension of the Phillips model for shear induced particle migration. <i>Microsystem Technologies</i> , 2011 , 17, 265-272	1.7	6
200	A robust and flexible optimization technique for efficient shrinking of MEMS accelerometers. <i>Microsystem Technologies</i> , 2010 , 16, 647-654	1.7	6
199	Adaptive error control in multi-physical thin-structure MEMS FE-simulation. <i>Journal of Computational Physics</i> , 2004 , 196, 145-172	4.1	6
198	Solid Propellant Microthruster: Theory of Operation and Modelling Strategy 2002,		6
197	Simulation toolbox and material parameter data base for CMOS MEMS		6
196	A micro electro mechanical CAD extension for SESES. <i>Journal of Micromechanics and Microengineering</i> , 1993 , 3, 118-122	2	6
195	Micro and nano patternable magnetic carbon. Journal of Applied Physics, 2016, 120, 235107	2.5	6
194	Advanced Numerical Methodology to Analyze High-Temperature Wire-Net Compact Heat Exchangers For a Micro-Combined Heat and Power System Application. <i>Heat Transfer Engineering</i> , 2020 , 41, 934-946	1.7	6
193	Carbon fiber/microlattice 3D hybrid architecture as multi-scale scaffold for tissue engineering. <i>Materials Science and Engineering C</i> , 2021 , 126, 112140	8.3	6
192	Antennas for Radio Frequency Identification Tags. Advanced Micro & Nanosystems,313-329		6
191	Numerical and Experimental Study of Microchannel Performance on Flow Maldistribution. <i>Micromachines</i> , 2020 , 11,	3.3	5
190	Mechanical Thermal Noise in Micro-Machined Levitated Two-Axis Rate Gyroscopes. <i>IEEE Sensors Journal</i> , 2018 , 18, 1390-1402	4	5
189	A new fully integrated multichannel receiver design for magnetic resonance imaging 2016 , 46B, 134-14	15	5
188	Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers. <i>Journal of Chemical Physics</i> , 2016 , 144, 244101	3.9	5
187	Optical tweezers for trapping in a microfluidic environment. <i>Applied Optics</i> , 2018 , 57, 5733-5742	1.7	5
186	Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation. <i>Review of Scientific Instruments</i> , 2018 , 89, 083113	1.7	5
185	A qualitative technique to study stability and dynamics of micro-machined inductive contactless suspensions 2017 ,		5
184	Patient Specific Hemodynamics: Combined 4D Flow-Sensitive MRI and CFD 2011 , 27-38		5

183	Parametric model order reduction accelerated by subspace recycling 2009,		5
182	Optimization of an electromagnetic comb drive actuator. <i>Sensors and Actuators A: Physical</i> , 2009 , 154, 212-217	3.9	5
181	X3D: 3D X-ray lithography and development simulation for MEMS		5
180	New convergence scheme for self-consistent electromechanical analysis of iMEMS		5
179	Numerical Modelling and Materials Characterisation for Integrated Micro Electro Mechanical Systems 1995 , 1-9		5
178	Microfluidic Overhauser DNP chip for signal-enhanced compact NMR. Scientific Reports, 2021, 11, 4671	4.9	5
177	Inkjet Printing of Interconnects and Contacts Based on Inorganic Nanoparticles for Printed Electronic Applications. <i>Advanced Micro & Nanosystems</i> ,347-364		5
176	Design and Simulation of a Wireless SAW-Pirani Sensor with Extended Range and Sensitivity. <i>Sensors</i> , 2019 , 19,	3.8	4
175	Micro-textures inversely designed with overlayed-lithography manufacturability for wetting behavior in CassieBaxter status. <i>Applied Mathematical Modelling</i> , 2019 , 74, 621-640	4.5	4
174	Numerical and experimental investigation of a wire-net compact heat exchanger performance for high-temperature applications. <i>Applied Thermal Engineering</i> , 2019 , 154, 208-216	5.8	4
173	Facile template-free synthesis of multifunctional 3D cellular carbon from edible rice paper <i>RSC Advances</i> , 2020 , 10, 16616-16628	3.7	4
172	Histological Correlates of Diffusion-Weighted Magnetic Resonance Microscopy in a Mouse Model of Mesial Temporal Lobe Epilepsy. <i>Frontiers in Neuroscience</i> , 2020 , 14, 543	5.1	4
171	Pulse Tube Cryocooler: Phasor Analysis and One-Dimensional Numerical Simulation. <i>Journal of Low Temperature Physics</i> , 2020 , 199, 1179-1197	1.3	4
170	Insertable biplanar gradient coils for magnetic resonance microscopy: theoretical minimization of power dissipation for different fabrication methods. <i>Biomedical Physics and Engineering Express</i> , 2018 , 4, 035019	1.5	4
169	Microfluidic channel structures speed up mixing of multiple emulsions by a factor of ten. <i>Biomicrofluidics</i> , 2014 , 8, 054101	3.2	4
168	SYMPLER: SYMbolic ParticLE simulatoR with grid-computing interface. <i>Computer Physics Communications</i> , 2014 , 185, 1085-1099	4.2	4
167	System-Level Modeling of MEMS by Means of Model Order Reduction (Mathematical Approximations) [Mathematical Background. <i>Advanced Micro & Nanosystems</i> , 2013 , 53-93		4
166	Subthreshold CMOS transistors are largely immune to magnetic field effects when operated above 11 T 2015 , 45, 97-105		4

165	Ink Jet Printed Silver Lines Formed in Microchannels Exhibit Lower Resistance Than Their Unstructured Counterparts. <i>Journal of Imaging Science and Technology</i> , 2011 , 55, 040302	1.2	4
164	Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems 2008 ,		4
163	Compact electro-thermal models of semiconductor devices with multiple heat sources		4
162	Model order reduction of 3D electro-thermal model for a novel micromachined hotplate gas sensor		4
161	Simulation procedure to improve piezoresistive microsensors used for monitoring ball bonding. Sensors and Actuators A: Physical, 2001 , 92, 299-304	3.9	4
160	Coupled 3D thermo-electro-mechanical simulations of microactuators		4
159	Three-dimensional modelling of capacitive humidity sensors. <i>Sensors and Actuators A: Physical</i> , 1990 , 25, 243-247	3.9	4
158	Multiphysics for Structural Topology Optimization. Sensor Letters, 2006, 4, 191-199	0.9	4
157	Carbon-Based Materials for Articular Tissue Engineering: From Innovative Scaffolding Materials toward Engineered Living Carbon. <i>Advanced Healthcare Materials</i> , 2021 , e2101834	10.1	4
156	Model Order Reduction for MEMS: Methodology and Computational Environment for Electro-Thermal Models. <i>Mathematics in Industry</i> , 2008 , 403-419	0.2	4
155	Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing. <i>Materials Today Chemistry</i> , 2020 , 17, 100338	6.2	4
154	Microscale 3D imaging by magnetic resonance force microscopy using full-volume Fourier- and Hadamard-encoding. <i>Journal of Magnetic Resonance</i> , 2019 , 299, 196-201	3	4
153	Pull-in actuation in hybrid micro-machined contactless suspension. <i>Journal of Physics: Conference Series</i> , 2018 , 1052, 012035	0.3	4
152	Incorporation of image data from a previous examination in 3D serial MR imaging. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2015 , 28, 413-25	2.8	3
151	Relationship Between Zero-Rate Output and the MEMS Element in a Closed-Loop System. <i>IEEE Sensors Journal</i> , 2015 , 15, 7200-7207	4	3
150	Topology optimization on two-dimensional manifolds. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2020 , 364, 112937	5.7	3
149	Design of a 3T preamplifier which stability is insensitive to coil loading. <i>Journal of Magnetic Resonance</i> , 2016 , 265, 215-23	3	3
148	Load sensitive stable current source for complex precision pulsed electroplating. <i>Review of Scientific Instruments</i> , 2019 , 90, 104704	1.7	3

147	Moment-Matching-Based Linear Model Order Reduction for Nonparametric and Parametric Electrothermal MEMS Models. <i>Advanced Micro & Nanosystems</i> , 2013 , 211-235		3
146	Insight into the micro scale dynamics of a micro fluidic wetting-based conveying system by particle based simulation. <i>Microsystem Technologies</i> , 2012 , 18, 523-530	1.7	3
145	Constrained simulations of flow in haemodynamic devices: towards a computational assistance of magnetic resonance imaging measurements. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 2494-501	3	3
144	Design issues in electrostatic microplate actuators: Device stability and post pull-in behaviour 2011 ,		3
143	Design and fabrication of a novel low-cost hotplate micro gas sensor 2002 , 4755, 191		3
142	Surface tension defects in microfluidic self-alignment 2002 , 4755, 55		3
141	Automatic adaptive meshing for efficient electrostatic boundary element simulations		3
140	Microsystem CAD 1996 , 2882, 170		3
139	Microsystem Modeling. Sensors Update, 1996 , 2, 181-209		3
138	SESES: a comprehensive MEMS modelling system		3
138	SESES: a comprehensive MEMS modelling system Process Simulation System for 3D X-Ray Lithography and Development. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2003 , 123, 368-375	0.2	3
Ť	Process Simulation System for 3D X-Ray Lithography and Development. <i>IEEJ Transactions on</i>	0.2	
137	Process Simulation System for 3D X-Ray Lithography and Development. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2003 , 123, 368-375 Prototyping a Microfluidic Sensor for Real-Time Detection of Airborne Formaldehyde. <i>International</i>		3
137	Process Simulation System for 3D X-Ray Lithography and Development. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2003 , 123, 368-375 Prototyping a Microfluidic Sensor for Real-Time Detection of Airborne Formaldehyde. <i>International Journal of Chemical Engineering and Applications (IJCEA)</i> , 2020 , 11, 23-28 Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR	0.2	3
137 136 135	Process Simulation System for 3D X-Ray Lithography and Development. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2003 , 123, 368-375 Prototyping a Microfluidic Sensor for Real-Time Detection of Airborne Formaldehyde. <i>International Journal of Chemical Engineering and Applications (IJCEA)</i> , 2020 , 11, 23-28 Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy. <i>Microsystems and Nanoengineering</i> , 2021 , 7, 30 Inductively coupled magic angle spinning microresonators benchmarked for high-resolution single	0.2 7·7	3 3 3
137 136 135	Process Simulation System for 3D X-Ray Lithography and Development. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2003 , 123, 368-375 Prototyping a Microfluidic Sensor for Real-Time Detection of Airborne Formaldehyde. <i>International Journal of Chemical Engineering and Applications (IJCEA)</i> , 2020 , 11, 23-28 Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy. <i>Microsystems and Nanoengineering</i> , 2021 , 7, 30 Inductively coupled magic angle spinning microresonators benchmarked for high-resolution single embryo metabolomic profiling. <i>Analyst, The</i> , 2019 , 144, 7192-7199 Numerical Study of Perturbators Influence on Heat Transfer and Investigation of Collector Performance for a Micro-Combined Heat and Power System Application. <i>Heat Transfer Engineering</i> ,	0.2 7·7	3333
137 136 135 134	Process Simulation System for 3D X-Ray Lithography and Development. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2003 , 123, 368-375 Prototyping a Microfluidic Sensor for Real-Time Detection of Airborne Formaldehyde. <i>International Journal of Chemical Engineering and Applications (IJCEA)</i> , 2020 , 11, 23-28 Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy. <i>Microsystems and Nanoengineering</i> , 2021 , 7, 30 Inductively coupled magic angle spinning microresonators benchmarked for high-resolution single embryo metabolomic profiling. <i>Analyst, The</i> , 2019 , 144, 7192-7199 Numerical Study of Perturbators Influence on Heat Transfer and Investigation of Collector Performance for a Micro-Combined Heat and Power System Application. <i>Heat Transfer Engineering</i> , 2021 , 42, 456-478 Design of small-scale gradient coils in magnetic resonance imaging by using the topology	0.2 7·7 5	3 3 3 3

129	Inkjet Printed Electrochemical Sensors. Advanced Micro & Nanosystems, 295-311	3
128	Inkjet Printing for MEMS. Advanced Micro & Nanosystems,331-345	3
127	Thermal Inkjet. Advanced Micro & Nanosystems,41-56	3
126	Drying of Inkjet-Printed Droplets. Advanced Micro & Nanosystems,97-110	3
125	Postprinting Processes for Inorganic Inks for Plastic Electronics Applications. <i>Advanced Micro & Nanosystems</i> ,111-125	3
124	Porous Silicon Based Rugate Filter Wheel for Multispectral Imaging Applications. <i>ECS Journal of Solid State Science and Technology</i> , 2019 , 8, Q43-Q49	2
123	Optical gauge head to evaluate gradient field induced vibrations of conductive structures during MRI 2017 ,	2
122	A universal and stand-alone datalogger for lab-on-a-disc applications 2016 ,	2
121	Computationally efficient and stable order reduction method for a large-scale model of MEMS piezoelectric energy harvester 2014 ,	2
120	The noise factor of receiver coil matching networks in MRI. <i>Magnetic Resonance Imaging</i> , 2017 , 37, 252-259,	2
119	A compact parametric model of magnetic resonance micro sensor 2015 ,	2
118	Reduced order modeling enables system level simulation of a MEMS piezoelectric energy harvester with a self-supplied SSHI-scheme 2013 ,	2
117	Smoothed particle hydrodynamics-based numerical investigation on sessile, oscillating droplets. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,</i> 2011 , 369, 2565-73	2
116	Design Rule and Orientation Layout for MEMS Curved Beams on Silicon. <i>Journal of Microelectromechanical Systems</i> , 2010 , 19, 706-714	2
115	Miniaturization limits of field-effect based MEMS accelerometers. <i>Microsystem Technologies</i> , 2010 , 16, 1861-1868	2
114	Simulation of a thermomechanically actuated gas sensor	2
113	Solenoidal micro coils manufactured with a wire bonder. <i>Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)</i> , 2008 ,	2
112	Combdrive Configuration for an Electromagnetic Reluctance Actuator. <i>Journal of Microelectromechanical Systems</i> , 2008 , 17, 1164-1171	2

111	Comparison of model order reduction methodologies for thermal problems		2	
110	MODELING, SIMULATION AND OPTIMIZATION OF ELECTROWETTING 2006 , 53-84		2	
109	Dynamic modeling of interactions between fields and matter in MEMS devices. <i>Microsystem Technologies</i> , 2004 , 10, 387-392	1.7	2	
108	A Simulation free Reduction Scheme and Nonlinear Modelling of an Electrostatic Beam. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2004 , 37, 713-718		2	
107	Modeling Micro PIM. Advanced Micro & Nanosystems, 2005, 51-84		2	
106	Compact electro-thermal model of semiconductor device with nonlinear convection coefficient		2	
105	Automatic order reduction of thermo-electric model for micro-ignition unit		2	
104	Automatic order reduction of thermo-electric models for MEMS: Arnoldi versus Guyan		2	
103	Smart enumeration in C++: virtual construction, message dispatching and tables. <i>Software - Practice and Experience</i> , 1999 , 29, 67-76	2.5	2	
102	Automatic correction of diffraction pattern shift in a pushbroom hyperspectral imager with a piezoelectric internal line-scanning unit 2017 ,		2	
101	Development of Control Circuit for Inductive Levitation Micro-Actuators. <i>Proceedings (mdpi)</i> , 2020 , 64, 39	0.3	2	
100	Integrated Engineering Development Environment. <i>The Mathematica Journal</i> , 2007 , 10,		2	
99	Model Order Reduction for Circuit Level Simulation of RF MEMS Frequency Selective Devices. <i>Sensor Letters</i> , 2008 , 6, 1-8	0.9	2	
98	Geometrically-differential NMR in a stripline front-end. <i>Journal of Magnetic Resonance</i> , 2020 , 310, 1066	559	2	
97	Optofluidic Formaldehyde Sensing: Towards On-Chip Integration. <i>Micromachines</i> , 2020 , 11,	3.3	2	
96	Siphon-Controlled Automation on a Lab-on-a-Disc Using Event-Triggered Dissolvable Film Valves. <i>Biosensors</i> , 2021 , 11,	5.9	2	
95	Real-Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19176-19182	16.4	2	
94	Dual-mode spectral imaging system employing a focus variable lens. <i>Advanced Optical Technologies</i> , 2016 , 5,	0.9	2	

93	A Novel Sensor Design and Fabrication for Wireless Interventional MRI Through Induction Coupling 2019 ,		2
92	Automatic Adaptive Gain for Magnetic Resonance Sensitivity Enhancement. <i>Analytical Chemistry</i> , 2019 , 91, 2376-2383	7.8	2
91	Gradient-Induced Mechanical Vibration of Neural Interfaces During MRI. <i>IEEE Transactions on Biomedical Engineering</i> , 2020 , 67, 915-923	5	2
90	Toward a Compact Wireless Surface Acoustic Wave Pirani Microsensor with Extended Range and Sensitivity. <i>Heat Transfer Engineering</i> , 2021 , 42, 565-578	1.7	2
89	IC-Based and IC-Assisted INMR Detectors. Advanced Micro & Nanosystems, 2018, 143-176		2
88	Improved method for MR microscopy of brain tissue cultured with the interface method combined with Lenz lenses. <i>Magnetic Resonance Imaging</i> , 2018 , 52, 24-32	3.3	2
87	Nano- and Microstructured Copper/Copper Oxide Composites on Laser-Induced Carbon for Enzyme-Free Glucose Sensors. <i>ACS Applied Nano Materials</i> , 2021 , 4, 13747-13760	5.6	2
86	Micro-NMR elucidates altered metabolites in the Parkinson disease-related catp-6 genotype of Caenorhabditis elegans. <i>Metabolomics</i> , 2017 , 13, 1	4.7	1
85	Development of paper-based wireless communication modules for point-of-care diagnostic applications 2017 ,		1
84	Root Cause Analysis of Zero-Rate Output Sources in an MEMS Gyroscope. <i>IEEE Sensors Journal</i> , 2017 , 17, 959-966	4	1
83	Comparison of Storage Methods for Microfluidically Produced Water-in-Oil Droplets. <i>Chemical Engineering and Technology</i> , 2019 , 42, 2028-2034	2	1
82	Novel ionic liquid - polymer composite and an approach for its patterning by conventional photolithography 2015 ,		1
81	Advanced Microfluidic Assays for Caenorhabditis elegans 2016 ,		1
80	Capacitor re-design overcomes the rotation rate limit of MACS resonators 2017 , 47B, e21362		1
79	Wireless closed-loop control of centrifugo-pneumatic valving towards large-scale microfluidic process integration 2018 ,		1
78	Ink-jet printing of host-guest systems based on acrylates with fluorescent dopants 2016 ,		1
77	Circuit level simulation of MRI receive chain using excitation derived from images 2014 , 44, 102-113		1
76	Optimal magnetic susceptibility matching in 3D. <i>Magnetic Resonance in Medicine</i> , 2013 , 69, 1146-56	4.4	1

75	Linear and Nonlinear Model Order Reduction for MEMS Electrostatic Actuators. <i>Advanced Micro & Nanosystems</i> , 2013 , 263-289		1
74	Photolithography: Two-Photon Nanolithography Enhances the Performance of an Ionic LiquidPolymer Composite Sensor (Adv. Funct. Mater. 11/2015). <i>Advanced Functional Materials</i> , 19 2015 , 25, 1682-1682	5.6	1
73	Structure preserving model order reduction and system level simulation of MEMS piezoelectric energy harvester 2014 ,		1
72	Conductive and transparent gel microstructures fabricated by inkjet printing of ionic liquid based fluids 2012 ,		1
71	CMOS 8-channel frequency division multiplexer for 9.4 T magnetic resonance imaging 2013,		1
70	Micro-NMR probe featuring disposable, self-priming sample-inserts, towards high-throughput profiling 2013 ,		1
69	SPH BASED OPTIMIZATION OF ELECTROWETTING-DRIVEN DIGITAL MICROFLUIDICS WITH ADVANCED ACTUATION PATTERNS. <i>International Journal of Modern Physics C</i> , 2013 , 24, 1340012	.1	1
68	Molecular Dynamics Simulations of Nanoparticle Interactions with a Planar Wall: Does Shape Matter?. Communications in Computational Physics, 2013 , 13, 900-915	·4	1
67	Inductively coupled wirebonded microcoils for wireless on-chip NMR 2011,		1
66	Reduction of Finite Element Mesh and Model Order for Fast Dynamic Analysis of Global/Local Problem. <i>Journal of Solid Mechanics and Materials Engineering</i> , 2009 , 3, 572-583		1
65	Automated extraction of capacitances and electrostatic forces in MEMS and ULSI interconnects from the mask layout		1
64	Near-wall velocity of suspended particles in microchannel flow. <i>Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)</i> , 2008 ,		1
63	A general purpose adaptivity driver for FE software. Software - Practice and Experience, 2003, 33, 1097-11.	.156	1
62	A new computational method for piezoelectric plate modeling: application to membrane microsensors		1
61	Nanometer-scale height measurements in micromachined picoliter vials based on interference fringe analysis		1
60	Automatic mesh adaptivity for finite element simulation of multilayer MEMS 2000,		1
59	Extraction of noise parameters for the macromodelling of MEMS		1
58	Selective excitation enables encoding and measurement of multiple diffusion parameters in a single experiment. <i>Magnetic Resonance</i> , 2021 , 2, 835-842	.9	1

57	LIGA 2008 , 293-340		1
56	Printed, flexible wireless temperature logging system 2019 ,		1
55	Exposure and Development Simulation for Deep X-Ray LIGA. Advanced Micro & Nanosystems, 2008, 103-14	2	1
54	Untuned broadband spiral micro-coils achieve sensitive multi-nuclear NMR TX/RX from microfluidic samples. <i>Scientific Reports</i> , 2021 , 11, 7798	9	1
53	Real-Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies**. <i>Angewandte Chemie</i> , 2021 , 133, 19325-19331	6	1
52	Wireless Double Micro-Resonator for Orientation Free Tracking of MR-Catheter During Interventional MRI. <i>IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology</i> , 2.3 2021 , 5, 78-83	8	1
51	Energy-aware 3D micro-machined inductive suspensions with polymer magnetic composite core. <i>Journal of Physics: Conference Series</i> , 2018 , 1052, 012048	3	1
50	Novel concept of a series linear electromagnetic array artificial muscle. <i>Journal of Physics:</i> Conference Series, 2018 , 1052, 012047	3	1
49	Small-Volume Hyphenated NMR Techniques. Advanced Micro & Nanosystems, 2018, 353-379		1
48	Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs. <i>Advanced Micro & Nanosystems</i> ,217-236		1
47	Inkjet Printing of Metal Oxide Thin-Film Transistors. Advanced Micro & Nanosystems,237-255		1
46	Inkjet Fabrication of Printed Circuit Boards. Advanced Micro & Nanosystems, 257-278		1
45	Photovoltaics. Advanced Micro & Nanosystems, 279-294		1
44	Cross Talk in Piezo Inkjet. Advanced Micro & Nanosystems,73-85		1
43	Patterning. Advanced Micro & Nanosystems,87-96		1
42	Vision Monitoring. Advanced Micro & Nanosystems, 127-144		1
41	A File Format for the Exchange of Nonlinear Dynamical ODE Systems 2005 , 317-326		1
40	Boundary Condition Independent Thermal Model 2005 , 345-348		1

39	Wall Microstructures of High Aspect Ratio Enabled by Near-Field Electrospinning. <i>Advanced Engineering Materials</i> ,2101740	3.5	1
38	Taxonomy for engineered living materials. Cell Reports Physical Science, 2022, 100807	6.1	1
37	Fiber bundle topology optimization of hierarchical microtextures for wetting behavior in Cassie-Baxter mode. <i>Structural and Multidisciplinary Optimization</i> , 2020 , 61, 2523-2556	3.6	О
36	DPD enables mesoscopic MRI simulation of slow flow. <i>Microfluidics and Nanofluidics</i> , 2018 , 22, 1	2.8	O
35	DPD of diffusion-weighted MRI. Computers and Fluids, 2018, 172, 467-473	2.8	O
34	Multiphysics and Multiscale Simulation 2008, 539-557		Ο
33	MEMS and NEMS Simulation 2006 , 93-186		О
32	Deep regression with ensembles enables fast, first-order shimming in low-field NMR <i>Journal of Magnetic Resonance</i> , 2022 , 336, 107151	3	Ο
31	Topologically optimized magnetic lens for magnetic resonance applications. <i>Magnetic Resonance</i> , 2020 , 1, 225-236	2.9	О
30	Characterization of a Wireless Vacuum Sensor Prototype Based on the SAW-Pirani Principle. <i>Processes</i> , 2020 , 8, 1685	2.9	O
29	ArduiTaM: accurate and inexpensive NMR auto tune and match system. <i>Magnetic Resonance</i> , 2020 , 1, 105-113	2.9	О
28	Unraveling the dependency on multiple passes in laser-induced graphene electrodes for supercapacitor and H2O2 sensing. <i>Materials Science for Energy Technologies</i> , 2021 , 4, 407-412	5.2	Ο
27	Skin stimulation and recording: Moving towards metal-free electrodes. <i>Biosensors and Bioelectronics: X</i> , 2022 , 100143	2.9	О
26	A multi-purpose, rolled-up, double-helix resonator. <i>Journal of Magnetic Resonance</i> , 2019 , 309, 106599	3	
25	Application of Reduced Order Models in Circuit-Level Design for RF MEMS Devices. <i>Advanced Micro & Nanosystems</i> , 2013 , 335-356		
24	Zernike-Galerkin method: efficient computational tool for elastically deformable optics. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2011 , 28, 2554-60	1.8	
23	3D Ultra-Fast Manufactured Micro Coils on Polymer or Metal Cores. <i>SAIEE Africa Research Journal</i> , 2010 , 101, 42-44	0.7	
22	MEMS and NEMS Simulation 2006 , 93-186		

21	Numerical Offset Optimization of Magnetic Field Sensor Microsystems (Numerische Offsetverminderung in Magnetfeld-Mikrosensoren). <i>TM Technisches Messen</i> , 2001 , 68, 298	0.7
20	Microelectromechanical System-Based Micro Hot-Plate Devices 2017 , 257-280	
19	Analog Front End for a Micromachined Probe Storage Device 2008 , 623-643	
18	Hot Embossing of LIGA Microstructures. Advanced Micro & Nanosystems, 2008, 69-102	
17	Actuator Manufacture with LIGA Processes. Advanced Micro & Nanosystems, 2008, 297-321	
16	Equalization of Jetting Performance. Advanced Micro & Nanosystems, 159-172	
15	Combinatorial Screening of Materials Using Inkjet Printing as a Patterning Technique. <i>Advanced Micro & Nanosystems</i> ,19-39	
14	Issues in Color Filter Fabrication with Inkjet Printing. Advanced Micro & Nanosystems, 191-215	
13	High-Resolution Electrohydrodynamic Inkjet. Advanced Micro & Nanosystems,57-71	
12	Motion prediction enables simulated MR-imaging of freely moving model organisms. <i>PLoS Computational Biology</i> , 2019 , 15, e1006997	5
11	On the application of balanced steady-state free precession to MR microscopy. <i>Magnetic Resonance Materials in Physics, Biology, and Medicine</i> , 2019 , 32, 437-447	2.8
10	Microscale Hyperpolarization. <i>Advanced Micro & Nanosystems</i> , 2018 , 297-351	
	Microscate Hyperpotalization. Advanced Micro & Natiosystems, 2016, 291-331	
9	Compact Modeling Techniques for Magnetic Resonance Detectors. <i>Advanced Micro & Nanosystems</i> , 2018 , 21-56	
9	Compact Modeling Techniques for Magnetic Resonance Detectors. Advanced Micro & Nanosystems,	
	Compact Modeling Techniques for Magnetic Resonance Detectors. <i>Advanced Micro & Nanosystems</i> , 2018 , 21-56	
8	Compact Modeling Techniques for Magnetic Resonance Detectors. <i>Advanced Micro & Nanosystems</i> , 2018 , 21-56 Wave Guides for Micromagnetic Resonance. <i>Advanced Micro & Nanosystems</i> , 2018 , 75-108 Innovative Coil Fabrication Techniques for Miniaturized Magnetic Resonance Detectors. <i>Advanced</i>	
8	Compact Modeling Techniques for Magnetic Resonance Detectors. <i>Advanced Micro & Nanosystems</i> , 2018 , 21-56 Wave Guides for Micromagnetic Resonance. <i>Advanced Micro & Nanosystems</i> , 2018 , 75-108 Innovative Coil Fabrication Techniques for Miniaturized Magnetic Resonance Detectors. <i>Advanced Micro & Nanosystems</i> , 2018 , 109-141	3

A Technological Approach for Miniaturization of 3D Inductive Levitation Micro-Suspensions. *IEEE Magnetics Letters*, **2022**, 1-1

1.6

- 2 Microengineering Improves MR Sensitivity **2022**, 1-23
- Net-phase flow NMR for compact applications. *Journal of Magnetic Resonance*, **2022**, 107233

3