
Thomas Schlöglhofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9266418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The HeartMate 6 and CardioMEMS for Fixed Pulmonary Hypertension. ASAIO Journal, 2022, 68, e80-e83.	0.9	3
2	Incidence, clinical relevance and therapeutic options for outflow graft stenosis in patients with left ventricular assist devices. European Journal of Cardio-thoracic Surgery, 2022, 61, 716-724.	0.6	6
3	Effects of the atrium on intraventricular flow patterns during mechanical circulatory support. International Journal of Artificial Organs, 2022, 45, 421-430.	0.7	2
4	Inflow cannula position as risk factor for stroke in patients with HeartMate 3 left ventricular assist devices. Artificial Organs, 2022, 46, 1149-1157.	1.0	10
5	When Nothing Goes Right: Risk Factors and Biomarkers of Right Heart Failure after Left Ventricular Assist Device Implantation. Life, 2022, 12, 459.	1.1	6
6	Validation of Intrinsic Left Ventricular Assist Device Data Tracking Algorithm for Early Recognition of Centrifugal Flow Pump Thrombosis. Life, 2022, 12, 563.	1.1	4
7	A Sensorless Modular Multiobjective Control Algorithm for Left Ventricular Assist Devices: A Clinical Pilot Study. Frontiers in Cardiovascular Medicine, 2022, 9, 888269.	1.1	6
8	Global best practices consensus: Long-term management ofÂpatients with hybrid centrifugal flow left ventricular assist device support. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, 1120-1137.e2.	0.4	10
9	Left ventricular assist device driveline infections in three contemporary devices. Artificial Organs, 2021, 45, 464-472.	1.0	20
10	Implantable Fiber Bragg Grating Sensor for Continuous Heart Activity Monitoring: <i>Ex-Vivo</i> and <i>In-Vivo</i> Validation. IEEE Sensors Journal, 2021, 21, 14051-14059.	2.4	11
11	Effect of Timings of the Lavare Cycle on the Ventricular Washout in an In Vitro Flow Visualization Setup. ASAIO Journal, 2021, 67, 517-528.	0.9	6
12	Impact of Less Invasive Left Ventricular Assist Device Implantation on Heart Transplant Outcomes. Seminars in Thoracic and Cardiovascular Surgery, 2021, , .	0.4	4
13	The left ventricular assist device as a patient monitoring system. Annals of Cardiothoracic Surgery, 2021, 10, 221-232.	0.6	7
14	The role of the ventricular assist device coordinator: quo vadis?. Annals of Cardiothoracic Surgery, 2021, 10, 386-388.	0.6	9
15	Pump position and thrombosis in ventricular assist devices: Correlation of radiographs and CT data. International Journal of Artificial Organs, 2021, 44, 956-964.	0.7	8
16	A Power Tracking Algorithm for Early Detection of Centrifugal Flow Pump Thrombosis. ASAIO Journal, 2021, 67, 1018-1025.	0.9	12
17	Development of suction detection algorithms for a left ventricular assist device from patient data. Biomedical Signal Processing and Control, 2021, 69, 102910.	3.5	5
18	Psoas Muscle Area Predicts Mortality after Left Ventricular Assist Device Implantation. Life, 2021, 11, 922.	1.1	3

#	Article	IF	CITATIONS
19	Less Invasive Left Ventricular Assist Device Implantation Is Safe and Reduces Intraoperative Blood Product Use: A Propensity Score Analysis VAD Implantation Techniques and Blood Product Use. ASAIO Journal, 2021, 67, 47-52.	0.9	13
20	International Normalized Ratio Test Frequency in Left Ventricular Assist Device Patients Affects Anticoagulation Quality and Adverse Events. ASAIO Journal, 2021, 67, 157-162.	0.9	10
21	Driveline Features as Risk Factor for Infection in Left Ventricular Assist Devices: Meta-Analysis and Experimental Tests. Frontiers in Cardiovascular Medicine, 2021, 8, 784208.	1.1	8
22	Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1519-1527.e1.	0.4	24
23	LVAD speed increase during exercise, which patients would benefit the most? A simulation study. Artificial Organs, 2020, 44, 239-247.	1.0	12
24	Prevention and early treatment of driveline infections in ventricular assist device patients – The DESTINE staging proposal and the first standard of care protocol. Journal of Critical Care, 2020, 56, 106-112.	1.0	47
25	Early Detection of Pump Thrombosis in Patients With Left Ventricular Assist Device. ASAIO Journal, 2020, 66, 348-354.	0.9	17
26	Thrombolysis as first-line therapy for Medtronic/HeartWare HVAD left ventricular assist device thrombosis. European Journal of Cardio-thoracic Surgery, 2020, 58, 1182-1191.	0.6	9
27	Blood stream infection and outcomes in recipients of a left ventricular assist device. European Journal of Cardio-thoracic Surgery, 2020, 58, 907-914.	0.6	11
28	Hemodynamic exercise responses with a continuous-flow left ventricular assist device: Comparison of patients' response and cardiorespiratory simulations. PLoS ONE, 2020, 15, e0229688.	1.1	10
29	Continuous LVAD monitoring reveals high suction rates in clinically stable outpatients. Artificial Organs, 2020, 44, E251-E262.	1.0	28
30	The influence of left ventricular assist device inflow cannula position on thrombosis risk. Artificial Organs, 2020, 44, 939-946.	1.0	33
31	Novel Solutions for Patient Monitoring and Mechanical Circulatory Support Device Control. , 2020, , 707-728.		1
32	Impact of Bleeding Revision on Outcomes After Left Ventricular Assist Device Implantation. Annals of Thoracic Surgery, 2019, 108, 517-523.	0.7	10
33	Influence of a fully magnetically levitated left ventricular assist device on functional interrogation of implantable cardioverter defibrillators. Clinical Cardiology, 2019, 42, 914-918.	0.7	9
34	Functional capillary impairment in patients with ventricular assist devices. Scientific Reports, 2019, 9, 5909.	1.6	21
35	Noninvasive assessment of blood pressure in rotary blood pump recipients using a novel ultrasonic Doppler method. International Journal of Artificial Organs, 2019, 42, 226-232.	0.7	2
36	LVAD Pump Flow Does Not Adequately Increase With Exercise. Artificial Organs, 2019, 43, 222-228.	1.0	31

#	Article	IF	CITATIONS
37	The 2018 ISHLT/APM/AST/ICCAC/STSW recommendations for the psychosocial evaluation of adult cardiothoracic transplant candidates and candidates for long-term mechanical circulatory support. Journal of Heart and Lung Transplantation, 2018, 37, 803-823.	0.3	128
38	Interventional Treatment of LVAD Outflow Graft Stenosis by Introduction of Bare Metal Stents. ASAIO Journal, 2018, 64, e3-e7.	0.9	15
39	The 2018 ISHLT/APM/AST/ICCAC/STSW Recommendations for the Psychosocial Evaluation of Adult Cardiothoracic Transplant Candidates and Candidates for Long-term Mechanical Circulatory Support. Psychosomatics, 2018, 59, 415-440.	2.5	39
40	International Analysis of LVAD Point-of-Care Versus Plasma INR: A Multicenter Study. ASAIO Journal, 2018, 64, e161-e165.	0.9	7
41	A Standardized Telephone Intervention Algorithm Improves the Survival of Ventricular Assist Device Outpatients. Artificial Organs, 2018, 42, 961-969.	1.0	16
42	Wearable systems. , 2018, , 691-721.		3
43	Increased Thromboembolic Events With Dabigatran Compared With Vitamin K Antagonism in Left Ventricular Assist Device Patients. Circulation: Heart Failure, 2017, 10, .	1.6	64
44	Myocardial Recovery in Peripartum Cardiomyopathy After Hyperprolactinemia Treatment on BIVAD. ASAIO Journal, 2017, 63, 109-111.	0.9	5
45	Response by Andreas et al to Letter Regarding Article, "Increased Thromboembolic Events With Dabigatran Compared With Vitamin K Antagonism in Left Ventricular Assist Device Patients: A Randomized Controlled Pilot Trial― Circulation: Heart Failure, 2017, 10, .	1.6	1
46	From Research Lab to Clinical Routine of MCS. ASAIO Journal, 2017, 63, e51-e51.	0.9	0
47	Outpatient Management: The Role of the VAD Coordinator and Remote Monitoring. , 2017, , 445-465.		4
48	Daily Life Activity in Patients with Left Ventricular Assist Devices. International Journal of Artificial Organs, 2016, 39, 22-27.	0.7	15
49	International Coordinator Survey Results on the Outpatient Management of Patients with the Heartware® Ventricular Assist System. International Journal of Artificial Organs, 2016, 39, 553-557.	0.7	18
50	Identification and Management of Pump Thrombus in the HeartWare Left Ventricular Assist Device System. JACC: Heart Failure, 2015, 3, 849-856.	1.9	77
51	Repair of Left Ventricular Assist Device Driveline Damage Directly at the Transcutaneous Exit Site. Artificial Organs, 2014, 38, 422-425.	1.0	16
52	Usability of Ventricular Assist Devices in Daily Experience: A Multicenter Study. Artificial Organs, 2014, 38, 751-760.	1.0	24
53	Mesure semi-invasive du débit cardiaque basé sur le contour du pouls: étude et analyse. Canadian Journal of Anaesthesia, 2014, 61, 452-479.	0.7	45
54	Sternal force distribution during median sternotomy retraction. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 1381-1386.	0.4	6

#	Article	IF	CITATIONS
55	Importance of Linguistic Details in Alarm Messages of Ventricular Assist Devices. International Journal of Artificial Organs, 2013, 36, 1-4.	0.7	8
56	An Alternative Method to Create Highly Transparent Hollow Models for Flow Visualization. International Journal of Artificial Organs, 2013, 36, 131-134.	0.7	9
57	Fixation and Mounting of Porcine Aortic Valves for use in Mock Circuits. International Journal of Artificial Organs, 2013, 36, 738-741.	0.7	3