
Alexandre Bec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9265898/publications.pdf Version: 2024-02-01

ALEXANDRE REC

#	Article	IF	CITATIONS
1	Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate <i>Paraphysomonas</i> sp Limnology and Oceanography, 2006, 51, 1699-1707.	3.1	98
2	Combined effects of food quality and temperature on somatic growth and reproduction of two freshwater cladocerans. Limnology and Oceanography, 2009, 54, 1323-1332.	3.1	77
3	Assessing the reliability of fatty acid–specific stable isotope analysis for trophic studies. Methods in Ecology and Evolution, 2011, 2, 651-659.	5.2	74
4	Stable isotopes of fatty acids: current and future perspectives for advancing trophic ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190641.	4.0	61
5	Minor food sources can play a major role in secondary production in detritusâ€based ecosystems. Freshwater Biology, 2017, 62, 1155-1167.	2.4	51
6	Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish. Estuarine, Coastal and Shelf Science, 2011, 91, 450-461.	2.1	50
7	Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Environmental Microbiology, 2019, 21, 949-958.	3.8	48
8	There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology. Food Webs, 2018, 17, e00100.	1.2	47
9	Nutritional value of different food sources for the benthic Daphnidae Simocephalus vetulus: role of fatty acids. Archiv Für Hydrobiologie, 2003, 156, 145-163.	1.1	44
10	Accumulation of polyunsaturated fatty acids by cladocerans: effects of taxonomy, temperature and food. Freshwater Biology, 2012, 57, 696-703.	2.4	44
11	Aquatic hyphomycetes: a potential source of polyunsaturated fatty acids in detritus-based stream food webs. Fungal Ecology, 2015, 13, 205-210.	1.6	44
12	How pollen organic matter enters freshwater food webs. Limnology and Oceanography, 2013, 58, 1185-1195.	3.1	43
13	From Aquatic to Terrestrial Food Webs: Decrease of the Docosahexaenoic Acid/Linoleic Acid Ratio. Lipids, 2008, 43, 461-466.	1.7	42
14	Nutritional importance of minor dietary sources for leaping grey mullet Liza saliens (Mugilidae) during settlement: insights from fatty acid δ13C analysis. Marine Ecology - Progress Series, 2010, 404, 207-217.	1.9	40
15	Food quality of anemophilous plant pollen for zooplankton. Limnology and Oceanography, 2011, 56, 939-946.	3.1	33
16	Formation and Transfer of Fatty Acids in Aquatic Microbial Food Webs: Role of Heterotrophic Protists. , 2009, , 25-42.		32
17	Development of a Real-Time PCR assay for quantitative assessment of uncultured freshwater zoosporic fungi. Journal of Microbiological Methods, 2010, 81, 69-76.	1.6	29
18	How well can the fatty acid content of lake seston be predicted from its taxonomic composition?. Freshwater Biology, 2010, 55, 1958-1972.	2.4	25

Alexandre Bec

#	Article	IF	CITATIONS
19	Carbon and nutrients of indigestible pollen are transferred to zooplankton by chytrid fungi. Freshwater Biology, 2017, 62, 954-964.	2.4	24
20	Supplementation with Sterols Improves Food Quality of a Ciliate for Daphnia magna. Protist, 2006, 157, 477-486.	1.5	21
21	Origins of carbon sustaining the growth of whitefish <i>Coregonus lavaretus</i> early larval stages in Lake Annecy: insights from fattyâ€acid biomarkers. Journal of Fish Biology, 2009, 74, 2-17.	1.6	21
22	Resource partitioning among cladocerans in a littoral macrophyte zone: implications for the transfer of essential compounds. Aquatic Sciences, 2014, 76, 73-81.	1.5	20
23	Fatty acid composition of the heterotrophic nanoflagellate Paraphysomonas sp.: influence of diet and de novo biosynthesis. Aquatic Biology, 2010, 9, 107-112.	1.4	19
24	Uâ€shaped response Unifies views on temperature dependency of stoichiometric requirements. Ecology Letters, 2020, 23, 860-869.	6.4	16
25	A microcalorimetric approach for investigating stoichiometric constraints on the standard metabolic rate of a small invertebrate. Ecology Letters, 2018, 21, 1714-1722.	6.4	15
26	Quantifying the energetic cost of food quality constraints on resting metabolism to integrate nutritional and metabolic ecology. Ecology Letters, 2021, 24, 2339-2349.	6.4	15
27	Trophic partitioning among three littoral microcrustaceans: relative importance of periphyton as food resource. Journal of Limnology, 2012, 71, 28.	1.1	13
28	Temperature and nutrient effects on the relative importance of brown and green pathways for stream ecosystem functioning: A mesocosm approach. Freshwater Biology, 2020, 65, 1239-1255.	2.4	12
29	Feeding, growth and nutritional status of restocked salmon parr along the longitudinal gradient of a large European river: the Allier. Ecology of Freshwater Fish, 2009, 18, 282-296.	1.4	11
30	Impact of macroinvertebrate diet on growth and fatty acid profiles of restocked 0+ Atlantic salmon (Salmo salar) parr from a large European river (the Allier). Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 659-672.	1.4	11
31	Community structure and nutrient level control the tolerance of autotrophic biofilm to silver contamination. Environmental Science and Pollution Research, 2015, 22, 13739-13752.	5.3	9
32	Additive effect of calcium depletion and low resource quality on Gammarus fossarum (Crustacea,) Tj ETQq0 0	J rgBT /Ove	rloçk 10 Tf 50
33	Phospholipid-bound eicosapentaenoic acid (EPA) supports higher fecundity than free EPA in Daphnia magna. Journal of Plankton Research, 2017, 39, 843-848.	1.8	8
34	High food quality increases infection of Gammarus pulex (Crustacea: Amphipoda) by the acanthocephalan parasite Pomphorhynchus laevis. International Journal for Parasitology, 2019, 49, 805-817.	3.1	7
35	Interactive Impacts of Silver and Phosphorus on Autotrophic Biofilm Elemental and Biochemical Quality for a Macroinvertebrate Consumer. Frontiers in Microbiology, 2019, 10, 732.	3.5	7
36	Microalgal food sources greatly improve macroinvertebrate growth in detritusâ€based headwater streams: Evidence from an instream experiment. Freshwater Biology, 2022, 67, 1380-1394.	2.4	7

Alexandre Bec

#	Article	IF	CITATIONS
37	Temporal changes in essential fatty acid availability in different food sources in the littoral macrophyte zone. Hydrobiologia, 2014, 736, 127-137.	2.0	6
38	Early spring food resources and the trophic structure of macroinvertebrates in a small headwater stream as revealed by bulk and fatty acid stable isotope analysis. Hydrobiologia, 2021, 848, 5147-5167.	2.0	5
39	Feeding of pike larvae (Esox lucius L.) in an alluvial river backwater: fatty acid as markers of two organic matter flows. Fundamental and Applied Limnology, 2013, 183, 337-350.	0.7	4
40	Upstream/downstream food quality differences in a Caribbean Island River. Aquatic Ecology, 0, , 1.	1.5	0