
Sebastian Albinsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	YAP and TAZ in Vascular Smooth Muscle Confer Protection Against Hypertensive Vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 428-443.	1.1	13
2	Inducible Deletion of YAP and TAZ in Adult Mouse Smooth Muscle Causes Rapid and Lethal Colonic Pseudo-Obstruction. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 623-637.	2.3	14
3	New Kids on the Block: The Emerging Role of YAP/TAZ in Vascular Cell Mechanotransduction. Cardiac and Vascular Biology, 2021, , 69-96.	0.2	2
4	MRTFA overexpression promotes conversion of human coronary artery smooth muscle cells into lipid-laden foam cells. Vascular Pharmacology, 2021, 138, 106837.	1.0	2
5	miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Molecular Metabolism, 2021, 53, 101306.	3.0	4
6	Regulation of IRS-1, insulin signaling and glucose uptake by miR-143/145 in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2020, 529, 119-125.	1.0	14
7	Antagonistic relationship between the unfolded protein response and myocardinâ€driven transcription in smooth muscle. Journal of Cellular Physiology, 2020, 235, 7370-7382.	2.0	8
8	Adipose cell size changes are associated with a drastic actin remodeling. Scientific Reports, 2019, 9, 12941.	1.6	47
9	MicroRNAâ€dependent regulation of KLF4 by glucose in vascular smooth muscle. Journal of Cellular Physiology, 2018, 233, 7195-7205.	2.0	17
10	Loss of Vascular Myogenic Tone in miR-143/145 Knockout Mice Is Associated With Hypertension-Induced Vascular Lesions in Small Mesenteric Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 414-424.	1.1	31
11	Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP. Scientific Reports, 2018, 8, 13025.	1.6	18
12	The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin. ACS Central Science, 2018, 4, 760-767.	5.3	58
13	Increased Intracellular Lipid Accumulation in Cholesterol Loaded VSMCs upon MRTFA Overexpression. FASEB Journal, 2018, 32, lb286.	0.2	0
14	Uremia modulates the phenotype of aortic smooth muscle cells. Atherosclerosis, 2017, 257, 64-70.	0.4	11
15	Patients with bicuspid and tricuspid aortic valve exhibit distinct regional microrna signatures in mildly dilated ascending aorta. Heart and Vessels, 2017, 32, 750-767.	0.5	36
16	Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Scientific Reports, 2017, 7, 1334.	1.6	37
17	Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. Journal of Cellular Physiology, 2017, 232, 3088-3102.	2.0	9
18	Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO Journal, 2017, 36. 183-201.	3.5	75

SEBASTIAN ALBINSSON

#	Article	IF	CITATIONS
19	Regulation of microRNA expression in vascular smooth muscle by MRTF-A and actin polymerization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1088-1098.	1.9	13
20	MicroRNA-Dependent Control of Serotonin-Induced Pulmonary Arterial Contraction. Journal of Vascular Research, 2017, 54, 246-256.	0.6	5
21	Molecular Regulation of Arterial Aneurysms: Role of Actin Dynamics and microRNAs in Vascular Smooth Muscle. Frontiers in Physiology, 2017, 8, 569.	1.3	11
22	Similar regulatory mechanisms of caveolins and cavins by myocardin family coactivators in arterial and bladder smooth muscle. PLoS ONE, 2017, 12, e0176759.	1.1	8
23	Inhibition of Polyamine Uptake Potentiates the Antiâ€Proliferative Effect of Polyamine Synthesis Inhibition and Preserves the Contractile Phenotype of Vascular Smooth Muscle Cells. Journal of Cellular Physiology, 2016, 231, 1334-1342.	2.0	26
24	Emerging roles of the myocardin family of proteins in lipid and glucose metabolism. Journal of Physiology, 2016, 594, 4741-4752.	1.3	32
25	Micro <scp>RNA</scp> s in Bladder Outlet Obstruction: Relationship to Growth and Matrix Remodelling. Basic and Clinical Pharmacology and Toxicology, 2016, 119, 5-17.	1.2	13
26	Assessing the contribution of thrombospondin-4 induction and ATF6α activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Scientific Reports, 2016, 6, 32449.	1.6	12
27	Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization. Journal of Biological Chemistry, 2016, 291, 3552-3568.	1.6	54
28	Spontaneous activity and stretch-induced contractile differentiation are reduced in vascular smooth muscle of miR-143/145 knockout mice. Acta Physiologica, 2015, 215, 133-143.	1.8	19
29	Detrusor Induction of miR-132/212 following Bladder Outlet Obstruction: Association with MeCP2 Repression and Cell Viability. PLoS ONE, 2015, 10, e0116784.	1.1	20
30	Myocardin Family Members Drive Formation of Caveolae. PLoS ONE, 2015, 10, e0133931.	1.1	32
31	Regulation of Smooth Muscle Dystrophin and Synaptopodin 2 Expression by Actin Polymerization and Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1489-1497.	1.1	40
32	LKB1 signalling attenuates early events of adipogenesis and responds to adipogenic cues. Journal of Molecular Endocrinology, 2014, 53, 117-130.	1.1	22
33	HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Laboratory Investigation, 2014, 94, 557-568.	1.7	20
34	PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle. Physiological Reports, 2014, 2, e12080.	0.7	6
35	Stretchâ€Dependent Smooth Muscle Differentiation in the Portal Vein—Role of Actin Polymerization, Calcium Signaling, and micro <scp>RNA</scp> s. Microcirculation, 2014, 21, 230-238.	1.0	18
36	Inhibition of MicroRNA-125a Promotes Human Endothelial Cell Proliferation and Viability through an Antiapoptotic Mechanism. Journal of Vascular Research, 2014, 51, 239-245.	0.6	22

#	Article	IF	CITATIONS
37	Reticulon 4 Is Necessary for Endoplasmic Reticulum Tubulation, STIM1-Orai1 Coupling, and Store-operated Calcium Entry. Journal of Biological Chemistry, 2014, 289, 9380-9395.	1.6	62
38	Induction of angiotensin-converting enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility. American Journal of Physiology - Cell Physiology, 2014, 307, C1093-C1101.	2.1	30
39	Expression of microRNAs is essential for arterial myogenic tone and pressure-induced activation of the PI3-kinase/Akt pathway. Cardiovascular Research, 2014, 101, 288-296.	1.8	17
40	Arterial Dysfunction but Maintained Systemic Blood Pressure in Cavin-1-Deficient Mice. PLoS ONE, 2014, 9, e92428.	1.1	26
41	Regulation of vascular smooth muscle mechanotransduction by microRNAs and L-type calcium channels. Communicative and Integrative Biology, 2013, 6, e22278.	0.6	16
42	Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease. Pharmacological Research, 2013, 75, 28-36.	3.1	51
43	Mir-29 Repression in Bladder Outlet Obstruction Contributes to Matrix Remodeling and Altered Stiffness. PLoS ONE, 2013, 8, e82308.	1.1	40
44	Stretch-Sensitive Down-Regulation of the miR-144/451 Cluster in Vascular Smooth Muscle and Its Role in AMP-Activated Protein Kinase Signaling. PLoS ONE, 2013, 8, e65135.	1.1	33
45	Characterization of smooth muscle microRNA and mRNA genes that are regulated by actin polymerization. FASEB Journal, 2013, 27, 922.7.	0.2	0
46	Vascular function in cavinâ€1â€deficient mice: role of arginase 1 and dimethylarginine dimethylaminohydrolase 1. FASEB Journal, 2013, 27, 1195.6.	0.2	0
47	Smooth muscle microRNAs play a crucial role in regulation of myogenic tone in small mesenteric arteries. FASEB Journal, 2013, 27, 922.4.	0.2	0
48	Smooth muscle microRNAs regulate serotoninâ€induced contraction in pulmonary and systemic arteries. FASEB Journal, 2013, 27, 1196.1.	0.2	0
49	MicroRNAs Are Essential for Stretch-induced Vascular Smooth Muscle Contractile Differentiation via MicroRNA (miR)-145-dependent Expression of L-type Calcium Channels. Journal of Biological Chemistry, 2012, 287, 19199-19206.	1.6	58
50	Ticagrelor induces adenosine triphosphate release from human red blood cells. Biochemical and Biophysical Research Communications, 2012, 418, 754-758.	1.0	80
51	Deletion of Dicer in Smooth Muscle Affects Voiding Pattern and Reduces Detrusor Contractility and Neuroeffector Transmission. PLoS ONE, 2012, 7, e35882.	1.1	28
52	Impaired contractility and detrusor hypertrophy in cavin-1-deficient mice. European Journal of Pharmacology, 2012, 689, 179-185.	1.7	23
53	Cavin1 deficiency results in abnormal vascular function in mice. FASEB Journal, 2012, 26, 832.11.	0.2	0
54	Dicerâ€deletion in the detrusor reduces contractility and expression of Lâ€ŧype Ca2+ channels. FASEB Journal, 2012, 26, 1140.8.	0.2	0

4

SEBASTIAN ALBINSSON

#	Article	IF	CITATIONS
55	Role of miRNAs for vascular smooth muscle mechanoâ€sensing and contractile function. FASEB Journal, 2012, 26, .	0.2	0
56	Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?. Physiological Genomics, 2011, 43, 529-533.	1.0	73
57	Knockout of the vascular endothelial glucocorticoid receptor abrogates dexamethasone-induced hypertension. Journal of Hypertension, 2011, 29, 1347-1356.	0.3	54
58	Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function. PLoS ONE, 2011, 6, e18869.	1.1	116
59	The role of miRNAs in bladder contractility. FASEB Journal, 2011, 25, lb589.	0.2	0
60	Distinct Effects of Voltage- and Store-dependent Calcium Influx on Stretch-induced Differentiation and Growth in Vascular Smooth Muscle. Journal of Biological Chemistry, 2010, 285, 31829-31839.	1.6	29
61	MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1118-1126.	1.1	238
62	Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall. American Journal of Physiology - Cell Physiology, 2008, 294, C271-C279.	2.1	41
63	Arterial remodeling and plasma volume expansion in caveolin-1-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1222-R1231.	0.9	48
64	Integration of signal pathways for stretch-dependent growth and differentiation in vascular smooth muscle. American Journal of Physiology - Cell Physiology, 2007, 293, C772-C782.	2.1	47
65	Increased Rho activation and PKC-mediated smooth muscle contractility in the absence of caveolin-1. American Journal of Physiology - Cell Physiology, 2006, 291, C1326-C1335.	2.1	38
66	Stretch-dependent growth and differentiation in vascular smooth muscle: role of the actin cytoskeleton. Canadian Journal of Physiology and Pharmacology, 2005, 83, 869-875.	0.7	50
67	Stretch of the Vascular Wall Induces Smooth Muscle Differentiation by Promoting Actin Polymerization. Journal of Biological Chemistry, 2004, 279, 34849-34855.	1.6	132
68	Stretch-induced contractile differentiation of vascular smooth muscle: sensitivity to actin polymerization inhibitors. American Journal of Physiology - Cell Physiology, 2003, 284, C1387-C1396.	2.1	83