Abhijit Nag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9265510/publications.pdf

Version: 2024-02-01

	567281	552781
782	15	26
citations	h-index	g-index
27	27	661
docs citations	times ranked	citing authors
	citations 27	782 15 citations h-index 27 27

#	Article	IF	CITATIONS
1	Approaching Materials with Atomic Precision Using Supramolecular Cluster Assemblies. Accounts of Chemical Research, 2019, 52, 2-11.	15.6	152
2	Camouflaging Structural Diversity: Coâ€crystallization of Two Different Nanoparticles Having Different Cores But the Same Shell. Angewandte Chemie - International Edition, 2019, 58, 189-194.	13.8	80
3	Polymorphism of Ag ₂₉ (BDT) ₁₂ (TPP) ₄ ^{3â^'} cluster: interactions of secondary ligands and their effect on solid state luminescence. Nanoscale, 2018, 10, 9851-9855.	5.6	61
4	Dissociation of Gas Phase Ions of Atomically Precise Silver Clusters Reflects Their Solution Phase Stability. Journal of Physical Chemistry C, 2017, 121, 10971-10981.	3.1	49
5	Fullerene-Functionalized Monolayer-Protected Silver Clusters: [Ag ₂₉ (BDT) ₁₂ (C ₆₀) _{<i>n</i>}] ^{3–} (<i>n</i> >=) 1	Tji li I Qq1	1 0 978431 <mark>4</mark>
6	Isomerism in Supramolecular Adducts of Atomically Precise Nanoparticles. Journal of the American Chemical Society, 2018, 140, 13590-13593.	13.7	40
7	Sequential Dihydrogen Desorption from Hydride-Protected Atomically Precise Silver Clusters and the Formation of Naked Clusters in the Gas Phase. ACS Nano, 2017, 11, 11145-11151.	14.6	35
8	Understanding proton capture and cation-induced dimerization of [Ag ₂₉ (BDT) ₁₂] ^{3â^'} clusters by ion mobility mass spectrometry. Physical Chemistry Chemical Physics, 2018, 20, 7593-7603.	2.8	29
9	Atomically Precise Noble Metal Cluster-Assembled Superstructures in Water: Luminescence Enhancement and Sensing. Journal of Physical Chemistry C, 2020, 124, 22298-22303.	3.1	29
10	Crystallization of a Supramolecular Coassembly of an Atomically Precise Nanoparticle with a Crown Ether. , 2019, 1, 534-540.		27
11	[Ag ₅₉ (2,5-DCBT) ₃₂] ^{3â^'} : a new cluster and a precursor for three well-known clusters. Nanoscale, 2017, 9, 8240-8248.	5.6	24
12	Interconversions of Structural Isomers of [PdAu ₈] ²⁺ and [Au ₉ (PPh ₃) ₈] ³⁺ Revealed by Ion Mobility Mass Spectrometry. Journal of Physical Chemistry C, 2018, 122, 23123-23128.	3.1	23
13	Rapid isotopic exchange in nanoparticles. Science Advances, 2019, 5, eaau7555.	10.3	21
14	Selective Extraction of Gold by Niacin. ACS Sustainable Chemistry and Engineering, 2021, 9, 2129-2135.	6.7	19
15	Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions. ACS Nanoscience Au, 2022, 2, 160-178.	4.8	18
16	A covalently linked dimer of [Ag25(DMBT)18]â^'. Chemical Communications, 2019, 55, 5025-5028.	4.1	17
17	Detection of [Au $<$ sub $>$ 25 $<$ /sub $>$ (PET) $<$ sub $>$ 18 $<$ /sub $>$ (O $<$ sub $>$ 2 $<$ /sub $>$) $<$ sub $>$ (i>n $<$ /ii> = 1, 2, 3) Species by Mass Spectrometry. Journal of Physical Chemistry C, 2018, 122, 19455-19462.	3.1	16
18	Bent Keto Form of Curcumin, Preferential Stabilization of Enol by Piperine, and Isomers of Curcuminâ^©Cyclodextrin Complexes: Insights from Ion Mobility Mass Spectrometry. Analytical Chemistry, 2018, 90, 8776-8784.	6.5	15

#	Article	IF	CITATION
19	Gold-Induced Unfolding of Lysozyme: Toward the Formation of Luminescent Clusters. Journal of Physical Chemistry C, 2017, 121, 13335-13344.	3.1	14
20	Manifestation of Structural Differences of Atomically Precise Cluster-Assembled Solids in Their Mechanical Properties. Chemistry of Materials, 2020, 32, 7973-7984.	6.7	14
21	Fullerene-Mediated Aggregation of M ₂₅ (SR) ₁₈ [–] (M = Ag, Au) Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 14891-14900.	3.1	13
22	Tribochemical Degradation of Polytetrafluoroethylene in Water and Generation of Nanoplastics. ACS Sustainable Chemistry and Engineering, 2019, 7, 17554-17558.	6.7	12
23	Camouflaging Structural Diversity: Coâ€crystallization of Two Different Nanoparticles Having Different Cores But the Same Shell. Angewandte Chemie, 2019, 131, 195-200.	2.0	9
24	Synergistic Effect in Green Extraction of Noble Metals and Its Consequences. European Journal of Inorganic Chemistry, 2017, 2017, 3072-3079.	2.0	5
25	Monolayer-Protected Noble-Metal Clusters as Potential Standards for Negative-Ion Mass Spectrometry. Analytical Chemistry, 2018, 90, 11351-11357.	6.5	5
26	Ligand structure and charge state-dependent separation of monolayer protected Au ₂₅ clusters using non-aqueous reversed-phase HPLC. Analyst, The, 2020, 145, 1337-1345.	3.5	4
27	Isotopic Exchange of Atomically Precise Nanoclusters with Materials of Varying Dimensions: From Nanoscale to Bulk. Journal of Physical Chemistry C, 2021, 125, 16110-16117.	3.1	2