Emrah Ozensoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9265422/publications.pdf

Version: 2024-02-01

201575 265120 1,913 63 27 42 citations h-index g-index papers 65 65 65 2213 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Influence of La and Si promoters on the anaerobic heterogeneous catalytic decomposition of ammonium dinitramide (ADN) via alumina supported iridium active sites. Applied Catalysis A: General, 2022, 632, 118500.	2.2	1
2	A highly active and stable Ru catalyst for syngas production via glycerol dry reforming: Unraveling the interplay between support material and the active sites. Applied Catalysis A: General, 2022, 636, 118577.	2.2	4
3	Unraveling Molecular Fingerprints of Catalytic Sulfur Poisoning at the Nanometer Scale with Near-Field Infrared Spectroscopy. Journal of the American Chemical Society, 2022, 144, 8848-8860.	6.6	8
4	Precious Metal-Free LaMnO ₃ Perovskite Catalyst with an Optimized Nanostructure for Aerobic Câ€"H Bond Activation Reactions: Alkylarene Oxidation and Naphthol Dimerization. ACS Applied Materials & Dimerization.	4.0	15
5	From Aluminum Foil to Two-Dimensional Nanocrystals Using Ultrasonic Exfoliation. Journal of Physical Chemistry C, 2021, 125, 7746-7755.	1.5	7
6	Formaldehyde Selectivity in Methanol Partial Oxidation on Silver: Effect of Reactive Oxygen Species, Surface Reconstruction, and Stability of Intermediates. ACS Catalysis, 2021, 11, 6200-6209.	5 . 5	14
7	Effects induced by interaction of the Pt/CeOx/ZrOx/γ-Al2O3 ternary mixed oxide DeNOx catalyst with hydrogen. Catalysis Today, 2020, 357, 664-674.	2.2	5
8	Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity. Applied Catalysis B: Environmental, 2020, 263, 118227.	10.8	24
9	Coreâ€crown Quantum Nanoplatelets with Favorable Typeâ€l Heterojunctions Boost Charge Separation and Photocatalytic NO Oxidation on TiO ₂ . ChemCatChem, 2020, 12, 6329-6343.	1.8	16
10	All-Solution-Processed, Oxidation-Resistant Copper Nanowire Networks for Optoelectronic Applications with Year-Long Stability. ACS Applied Materials & Diterfaces, 2020, 12, 45136-45144.	4.0	25
11	Significance of the Mn-Oxidation State in Catalytic and Noncatalytic Promotional Effects of MnOx Domains in Formic Acid Dehydrogenation on Pd/MnOx Interfaces. Journal of Physical Chemistry C, 2020, 124, 22529-22538.	1.5	2
12	Exceptionally active and stable catalysts for CO2 reforming of glycerol to syngas. Applied Catalysis B: Environmental, 2019, 256, 117808.	10.8	35
13	Enhanced photocatalytic NOx oxidation and storage under visible-light irradiation by anchoring Fe3O4 nanoparticles on mesoporous graphitic carbon nitride (mpg-C3N4). Applied Catalysis B: Environmental, 2019, 249, 126-137.	10.8	64
14	Enhancement of Formic Acid Dehydrogenation Selectivity of Pd(111) Single Crystal Model Catalyst Surface via $Br\tilde{A}_{s}$ nsted Bases. Journal of Physical Chemistry C, 2019, 123, 28777-28788.	1.5	10
15	CdTe Quantum Dot-Functionalized P25 Titania Composite with Enhanced Photocatalytic NO ₂ Storage Selectivity under UV and Vis Irradiation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 865-879.	4.0	15
16	Trade-off between NOx storage capacity and sulfur tolerance on Al2O3/ZrO2/TiO2–based DeNOx catalysts. Catalysis Today, 2019, 320, 152-164.	2.2	7
17	Pt/CeO _{<i>x</i>} /ZrO _{<i>x</i>} / \hat{I}^3 -Al ₂ O ₃ Ternary Mixed Oxide DeNO _{<i>x</i>} Catalyst: Surface Chemistry and NO _{<i>x</i>} Interactions. Journal of Physical Chemistry C, 2018, 122, 12850-12863.	1.5	12
18	Dry reforming of glycerol over Rh-based ceria and zirconia catalysts: New insights on catalyst activity and stability. Applied Catalysis A: General, 2018, 564, 157-171.	2.2	43

#	Article	IF	CITATIONS
19	Selective Catalytic Ammonia Oxidation to Nitrogen by Atomic Oxygen Species on Ag(111). Journal of Physical Chemistry C, 2017, 121, 22985-22994.	1.5	19
20	Sulfur Poisoning and Regeneration Behavior of Perovskite-Based NO Oxidation Catalysts. Topics in Catalysis, 2017, 60, 40-51.	1.3	7
21	Sulfur-tolerant BaO/ZrO ₂ /TiO ₂ /Al ₂ O ₃ quaternary mixed oxides for deNO _X catalysis. Catalysis Science and Technology, 2017, 7, 133-144.	2.1	8
22	Hierarchical synthesis of corrugated photocatalytic TiO2 microsphere architectures on natural pollen surfaces. Applied Surface Science, 2017, 403, 159-167.	3.1	29
23	A Methodology to Discriminate Between Hydroxyl Radical-induced Processes and Direct Charge-transfer Reactions in Heterogeneous Photocatalysis. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	1
24	Comparative Analysis of Reactant and Product Adsorption Energies in the Selective Oxidative Coupling of Alcohols to Esters on Au(111). Topics in Catalysis, 2016, 59, $1383-1393$.	1.3	3
25	Photocatalytic Activity of Mesoporous Graphitic Carbon Nitride (mpg-C3N4) Towards Organic Chromophores Under UV and VIS Light Illumination. Topics in Catalysis, 2016, 59, 1305-1318.	1.3	58
26	Photocatalytic Conversion of Nitric Oxide on Titanium Dioxide: Cryotrapping of Reaction Products for Online Monitoring by Mass Spectrometry. Journal of Physical Chemistry C, 2016, 120, 8056-8067.	1.5	12
27	Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C–C bond activation and formation of methyl acetate as an oxidative coupling product. Surface Science, 2015, 641, 289-293.	0.8	8
28	A versatile bio-inspired material platform for catalytic applications: micron-sized "buckyball-shaped― TiO ₂ structures. RSC Advances, 2015, 5, 47174-47182.	1.7	12
29	MnO _{<i>x</i>} -Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature. ACS Catalysis, 2015, 5, 6099-6110.	5.5	120
30	NaCl-Promoted CuO–RuO2/SiO2 Catalysts for Propylene Epoxidation with O2 at Atmospheric Pressures: A Combinatorial Micro-reactor Study. Catalysis Letters, 2015, 145, 596-605.	1.4	22
31	Influence of the sol–gel preparation method on the photocatalytic NO oxidation performance of TiO2/Al2O3 binary oxides. Catalysis Today, 2015, 241, 25-32.	2.2	35
32	Palladium doped perovskite-based NO oxidation catalysts: The role of Pd and B-sites for NOx adsorption behavior via in-situ spectroscopy. Applied Catalysis B: Environmental, 2014, 154-155, 51-61.	10.8	53
33	NOx storage and reduction pathways on zirconia and titania functionalized binary and ternary oxides as NOx storage and reduction (NSR) systems. Catalysis Today, 2014, 231, 135-144.	2.2	15
34	TiO2â€"Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement. Applied Surface Science, 2014, 318, 142-149.	3.1	41
35	Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts. Applied Catalysis B: Environmental, 2014, 147, 251-263.	10.8	45
36	Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls. Applied Surface Science, 2014, 308, 50-57.	3.1	20

3

#	Article	IF	CITATIONS
37	Enhanced Sulfur Tolerance of Ceria-Promoted NO x Storage Reduction (NSR) Catalysts: Sulfur Uptake, Thermal Regeneration and Reduction with H2(g). Topics in Catalysis, 2013, 56, 950-957.	1.3	10
38	In-Situ Vibrational Spectroscopic Studies on Model Catalyst Surfaces at Elevated Pressures. Topics in Catalysis, 2013, 56, 1569-1592.	1.3	18
39	Influence of ceria on the NOx reduction performance of NOx storage reduction catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 89-100.	10.8	53
40	Interactive Surface Chemistry of CO ₂ and NO ₂ on Metal Oxide Surfaces: Competition for Catalytic Adsorption Sites and Reactivity. Journal of Physical Chemistry C, 2013, 117, 7713-7720.	1.5	12
41	First-Principles Investigation of NO _{<i>x</i>} and SO _{<i>x</i>} Adsorption on Anatase-Supported BaO and Pt Overlayers. Journal of Physical Chemistry C, 2012, 116, 6191-6199.	1.5	20
42	SOx uptake and release properties of TiO2/Al2O3 and BaO/TiO2/Al2O3 mixed oxide systems as NOx storage materials. Catalysis Today, 2012, 184, 54-71.	2.2	25
43	Role of the Exposed Pt Active Sites and BaO ₂ Formation in NO _{<i>x</i>} Storage Reduction Systems: A Model Catalyst Study on BaO _{<i>x</i>} /Pt(111). Journal of Physical Chemistry C, 2011, 115, 24256-24266.	1.5	13
44	Direct Evidence for the Instability and Deactivation of Mixed-Oxide Systems: Influence of Surface Segregation and Subsurface Diffusion. Journal of Physical Chemistry C, 2011, 115, 22438-22443.	1.5	12
45	Fine-Tuning the Dispersion and the Mobility of BaO Domains on NO _{<i>x</i>} Storage Materials via TiO ₂ Anchoring Sites. Journal of Physical Chemistry C, 2010, 114, 17003-17016.	1.5	32
46	Fe Promoted NO _{<i>x</i>} Storage Materials: Structural Properties and NO _{<i>x</i>} Uptake. Journal of Physical Chemistry C, 2010, 114, 357-369.	1.5	34
47	The effect of impregnation strategy on methane dry reforming activity of Ce promoted Pt/ZrO2. International Journal of Hydrogen Energy, 2009, 34, 9711-9722.	3.8	157
48	Nature of the Tiâ^'Ba Interactions on the BaO/TiO ₂ /Al ₂ O ₃ NO _{<i>x</i>} Storage System. Journal of Physical Chemistry C, 2009, 113, 11014-11026.	1.5	33
49	NOx reduction on a transition metal-free Î ³ -Al2O3 catalyst using dimethylether (DME). Catalysis Today, 2008, 136, 46-54.	2.2	40
50	Ba Deposition and Oxidation on θ-Al2O3/NiAl(100) Ultrathin Films. Part I:  Anaerobic Deposition Conditions. Journal of Physical Chemistry B, 2006, 110, 17001-17008.	1.2	27
51	Low Temperature H2O and NO2 Coadsorption on \hat{l}_s -Al2O3/NiAl(100) Ultrathin Films. Journal of Physical Chemistry B, 2006, 110, 8025-8034.	1.2	27
52	NO Dimer and Dinitrosyl Formation on Pd(111):  From Ultra-High-Vacuum to Elevated Pressure Conditions. Journal of the American Chemical Society, 2006, 128, 2988-2994.	6.6	34
53	Ba Deposition and Oxidation on Î-Al2O3/NiAl(100) Ultrathin Films. Part II:  O2(g) Assisted Ba Oxidation. Journal of Physical Chemistry B, 2006, 110, 17009-17014.	1.2	27
54	Formation of a High Coverage (3 \tilde{A} — 3) NO Phase on Pd(111) at Elevated Pressures: \hat{A} Interplay between Kinetic and Thermodynamic Accessibility. Journal of Physical Chemistry B, 2005, 109, 5414-5417.	1.2	15

#	Article	IF	CITATIONS
55	Interaction of Water with Ordered î,-Al2O3Ultrathin Films Grown on NiAl(100). Journal of Physical Chemistry B, 2005, 109, 3431-3436.	1.2	35
56	NO2Adsorption on Ultrathin Ĵ-Al2O3Films:Â Formation of Nitrite and Nitrate Species. Journal of Physical Chemistry B, 2005, 109, 15977-15984.	1.2	60
57	A Vibrational Spectroscopic Study of the CO + NO Reaction: From Pd Single Crystals at Ultrahigh Vacuum to Pd Clusters Supported on SiO2 Thin Films at Elevated Pressures. ACS Symposium Series, 2004, , 284-289.	0.5	0
58	Understanding the Catalytic Conversion of Automobile Exhaust Emissions Using Model Catalysts: CO + NO Reaction on Pd(111). Topics in Catalysis, 2004, 28, 13-23.	1.3	31
59	Reply to "Comment on  Combined in Situ and Infrared Kinetic Study of the Catalytic CO + NO Reaction on Pd(111) at Pressures up to 240 mbar¹â€• Journal of Physical Chemistry B, 2004, 108, 14181-14182.	1.2	6
60	Vibrational spectroscopic studies on CO adsorption, NO adsorption CO + NO reaction on Pd model catalysts. Physical Chemistry Chemical Physics, 2004, 6, 3765.	1.3	139
61	Combined in Situ Infrared and Kinetic Study of the Catalytic CO \pm NO Reaction on Pd(111) at Pressures up to 240 mbar. Journal of Physical Chemistry B, 2003, 107, 2759-2764.	1.2	50
62	Polarization Modulation Infrared Reflection Absorption Spectroscopy at Elevated Pressures:  CO Adsorption on Pd(111) at Atmospheric Pressures. Journal of Physical Chemistry B, 2002, 106, 9367-9371.	1.2	107
63	Isocyanate Formation in the Catalytic Reaction of CO + NO on Pd(111):  An in Situ Infrared Spectroscopic Study at Elevated Pressures. Journal of the American Chemical Society, 2002, 124, 8524-8525.	6.6	81