
Emrah Ozensoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9265422/publications.pdf Version: 2024-02-01

EMDAH OZENSOV

#	Article	IF	CITATIONS
1	The effect of impregnation strategy on methane dry reforming activity of Ce promoted Pt/ZrO2. International Journal of Hydrogen Energy, 2009, 34, 9711-9722.	3.8	157
2	Vibrational spectroscopic studies on CO adsorption, NO adsorption CO + NO reaction on Pd model catalysts. Physical Chemistry Chemical Physics, 2004, 6, 3765.	1.3	139
3	MnO _{<i>x</i>} -Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature. ACS Catalysis, 2015, 5, 6099-6110.	5.5	120
4	Polarization Modulation Infrared Reflection Absorption Spectroscopy at Elevated Pressures:  CO Adsorption on Pd(111) at Atmospheric Pressures. Journal of Physical Chemistry B, 2002, 106, 9367-9371.	1.2	107
5	Isocyanate Formation in the Catalytic Reaction of CO + NO on Pd(111):  An in Situ Infrared Spectroscopic Study at Elevated Pressures. Journal of the American Chemical Society, 2002, 124, 8524-8525.	6.6	81
6	Enhanced photocatalytic NOx oxidation and storage under visible-light irradiation by anchoring Fe3O4 nanoparticles on mesoporous graphitic carbon nitride (mpg-C3N4). Applied Catalysis B: Environmental, 2019, 249, 126-137.	10.8	64
7	NO2Adsorption on Ultrathin Î-Al2O3Films:Â Formation of Nitrite and Nitrate Species. Journal of Physical Chemistry B, 2005, 109, 15977-15984.	1.2	60
8	Photocatalytic Activity of Mesoporous Graphitic Carbon Nitride (mpg-C3N4) Towards Organic Chromophores Under UV and VIS Light Illumination. Topics in Catalysis, 2016, 59, 1305-1318.	1.3	58
9	Influence of ceria on the NOx reduction performance of NOx storage reduction catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 89-100.	10.8	53
10	Palladium doped perovskite-based NO oxidation catalysts: The role of Pd and B-sites for NOx adsorption behavior via in-situ spectroscopy. Applied Catalysis B: Environmental, 2014, 154-155, 51-61.	10.8	53
11	Combined in Situ Infrared and Kinetic Study of the Catalytic CO + NO Reaction on Pd(111) at Pressures up to 240 mbar. Journal of Physical Chemistry B, 2003, 107, 2759-2764.	1.2	50
12	Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts. Applied Catalysis B: Environmental, 2014, 147, 251-263.	10.8	45
13	Dry reforming of glycerol over Rh-based ceria and zirconia catalysts: New insights on catalyst activity and stability. Applied Catalysis A: General, 2018, 564, 157-171.	2.2	43
14	TiO2–Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement. Applied Surface Science, 2014, 318, 142-149.	3.1	41
15	NOx reduction on a transition metal-free Î ³ -Al2O3 catalyst using dimethylether (DME). Catalysis Today, 2008, 136, 46-54.	2.2	40
16	Interaction of Water with Ordered Î,-Al2O3Ultrathin Films Grown on NiAl(100). Journal of Physical Chemistry B, 2005, 109, 3431-3436.	1.2	35
17	Influence of the sol–gel preparation method on the photocatalytic NO oxidation performance of TiO2/Al2O3 binary oxides. Catalysis Today, 2015, 241, 25-32.	2.2	35
18	Exceptionally active and stable catalysts for CO2 reforming of glycerol to syngas. Applied Catalysis B: Environmental, 2019, 256, 117808.	10.8	35

EMRAH OZENSOY

#	Article	IF	CITATIONS
19	NO Dimer and Dinitrosyl Formation on Pd(111):  From Ultra-High-Vacuum to Elevated Pressure Conditions. Journal of the American Chemical Society, 2006, 128, 2988-2994.	6.6	34
20	Fe Promoted NO _{<i>x</i>} Storage Materials: Structural Properties and NO _{<i>x</i>} Uptake. Journal of Physical Chemistry C, 2010, 114, 357-369.	1.5	34
21	Nature of the Tiâ^'Ba Interactions on the BaO/TiO ₂ /Al ₂ O ₃ NO _{<i>x</i>} Storage System. Journal of Physical Chemistry C, 2009, 113, 11014-11026.	1.5	33
22	Fine-Tuning the Dispersion and the Mobility of BaO Domains on NO _{<i>x</i>} Storage Materials via TiO ₂ Anchoring Sites. Journal of Physical Chemistry C, 2010, 114, 17003-17016.	1.5	32
23	Understanding the Catalytic Conversion of Automobile Exhaust Emissions Using Model Catalysts: CO + NO Reaction on Pd(111). Topics in Catalysis, 2004, 28, 13-23.	1.3	31
24	Hierarchical synthesis of corrugated photocatalytic TiO2 microsphere architectures on natural pollen surfaces. Applied Surface Science, 2017, 403, 159-167.	3.1	29
25	Ba Deposition and Oxidation on Î,-Al2O3/NiAl(100) Ultrathin Films. Part I:  Anaerobic Deposition Conditions. Journal of Physical Chemistry B, 2006, 110, 17001-17008.	1.2	27
26	Low Temperature H2O and NO2 Coadsorption on Î,-Al2O3/NiAl(100) Ultrathin Films. Journal of Physical Chemistry B, 2006, 110, 8025-8034.	1.2	27
27	Ba Deposition and Oxidation on Î,-Al2O3/NiAl(100) Ultrathin Films. Part II:  O2(g) Assisted Ba Oxidation. Journal of Physical Chemistry B, 2006, 110, 17009-17014.	1.2	27
28	SOx uptake and release properties of TiO2/Al2O3 and BaO/TiO2/Al2O3 mixed oxide systems as NOx storage materials. Catalysis Today, 2012, 184, 54-71.	2.2	25
29	All-Solution-Processed, Oxidation-Resistant Copper Nanowire Networks for Optoelectronic Applications with Year-Long Stability. ACS Applied Materials & Interfaces, 2020, 12, 45136-45144.	4.0	25
30	Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity. Applied Catalysis B: Environmental, 2020, 263, 118227.	10.8	24
31	NaCl-Promoted CuO–RuO2/SiO2 Catalysts for Propylene Epoxidation with O2 at Atmospheric Pressures: A Combinatorial Micro-reactor Study. Catalysis Letters, 2015, 145, 596-605.	1.4	22
32	First-Principles Investigation of NO _{<i>x</i>} and SO _{<i>x</i>} Adsorption on Anatase-Supported BaO and Pt Overlayers. Journal of Physical Chemistry C, 2012, 116, 6191-6199.	1.5	20
33	Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls. Applied Surface Science, 2014, 308, 50-57.	3.1	20
34	Selective Catalytic Ammonia Oxidation to Nitrogen by Atomic Oxygen Species on Ag(111). Journal of Physical Chemistry C, 2017, 121, 22985-22994.	1.5	19
35	In-Situ Vibrational Spectroscopic Studies on Model Catalyst Surfaces at Elevated Pressures. Topics in Catalysis, 2013, 56, 1569-1592.	1.3	18
36	Core rown Quantum Nanoplatelets with Favorable Typeâ€I Heterojunctions Boost Charge Separation and Photocatalytic NO Oxidation on TiO ₂ . ChemCatChem, 2020, 12, 6329-6343.	1.8	16

EMRAH OZENSOY

#	Article	IF	CITATIONS
37	Formation of a High Coverage (3 × 3) NO Phase on Pd(111) at Elevated Pressures: Interplay between Kinetic and Thermodynamic Accessibility. Journal of Physical Chemistry B, 2005, 109, 5414-5417.	1.2	15
38	NOx storage and reduction pathways on zirconia and titania functionalized binary and ternary oxides as NOx storage and reduction (NSR) systems. Catalysis Today, 2014, 231, 135-144.	2.2	15
39	CdTe Quantum Dot-Functionalized P25 Titania Composite with Enhanced Photocatalytic NO ₂ Storage Selectivity under UV and Vis Irradiation. ACS Applied Materials & Interfaces, 2019, 11, 865-879.	4.0	15
40	Precious Metal-Free LaMnO ₃ Perovskite Catalyst with an Optimized Nanostructure for Aerobic C–H Bond Activation Reactions: Alkylarene Oxidation and Naphthol Dimerization. ACS Applied Materials & Interfaces, 2021, 13, 5099-5110.	4.0	15
41	Formaldehyde Selectivity in Methanol Partial Oxidation on Silver: Effect of Reactive Oxygen Species, Surface Reconstruction, and Stability of Intermediates. ACS Catalysis, 2021, 11, 6200-6209.	5.5	14
42	Role of the Exposed Pt Active Sites and BaO ₂ Formation in NO _{<i>x</i>} Storage Reduction Systems: A Model Catalyst Study on BaO _{<i>x</i>} /Pt(111). Journal of Physical Chemistry C, 2011, 115, 24256-24266.	1.5	13
43	Direct Evidence for the Instability and Deactivation of Mixed-Oxide Systems: Influence of Surface Segregation and Subsurface Diffusion. Journal of Physical Chemistry C, 2011, 115, 22438-22443.	1.5	12
44	Interactive Surface Chemistry of CO ₂ and NO ₂ on Metal Oxide Surfaces: Competition for Catalytic Adsorption Sites and Reactivity. Journal of Physical Chemistry C, 2013, 117, 7713-7720.	1.5	12
45	A versatile bio-inspired material platform for catalytic applications: micron-sized "buckyball-shaped― TiO ₂ structures. RSC Advances, 2015, 5, 47174-47182.	1.7	12
46	Photocatalytic Conversion of Nitric Oxide on Titanium Dioxide: Cryotrapping of Reaction Products for Online Monitoring by Mass Spectrometry. Journal of Physical Chemistry C, 2016, 120, 8056-8067.	1.5	12
47	Pt/CeO _{<i>x</i>} /ZrO _{<i>x</i>} /γ-Al ₂ O ₃ Ternary Mixed Oxide DeNO _{<i>x</i>} Catalyst: Surface Chemistry and NO _{<i>x</i>} Interactions. Journal of Physical Chemistry C, 2018, 122, 12850-12863.	1.5	12
48	Enhanced Sulfur Tolerance of Ceria-Promoted NO x Storage Reduction (NSR) Catalysts: Sulfur Uptake, Thermal Regeneration and Reduction with H2(g). Topics in Catalysis, 2013, 56, 950-957.	1.3	10
49	Enhancement of Formic Acid Dehydrogenation Selectivity of Pd(111) Single Crystal Model Catalyst Surface via BrÃ,nsted Bases. Journal of Physical Chemistry C, 2019, 123, 28777-28788.	1.5	10
50	Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C–C bond activation and formation of methyl acetate as an oxidative coupling product. Surface Science, 2015, 641, 289-293.	0.8	8
51	Sulfur-tolerant BaO/ZrO ₂ /TiO ₂ /Al ₂ O ₃ quaternary mixed oxides for deNO _X catalysis. Catalysis Science and Technology, 2017, 7, 133-144.	2.1	8
52	Unraveling Molecular Fingerprints of Catalytic Sulfur Poisoning at the Nanometer Scale with Near-Field Infrared Spectroscopy. Journal of the American Chemical Society, 2022, 144, 8848-8860.	6.6	8
53	Sulfur Poisoning and Regeneration Behavior of Perovskite-Based NO Oxidation Catalysts. Topics in Catalysis, 2017, 60, 40-51.	1.3	7
54	Trade-off between NOx storage capacity and sulfur tolerance on Al2O3/ZrO2/TiO2–based DeNOx catalysts. Catalysis Today, 2019, 320, 152-164.	2.2	7

EMRAH OZENSOY

#	Article	IF	CITATIONS
55	From Aluminum Foil to Two-Dimensional Nanocrystals Using Ultrasonic Exfoliation. Journal of Physical Chemistry C, 2021, 125, 7746-7755.	1.5	7
56	Reply to "Comment on â€~Combined in Situ and Infrared Kinetic Study of the Catalytic CO + NO Reaction on Pd(111) at Pressures up to 240 mbar'― Journal of Physical Chemistry B, 2004, 108, 14181-14182.	1.2	6
57	Effects induced by interaction of the Pt/CeOx/ZrOx/γ-Al2O3 ternary mixed oxide DeNOx catalyst with hydrogen. Catalysis Today, 2020, 357, 664-674.	2.2	5
58	A highly active and stable Ru catalyst for syngas production via glycerol dry reforming: Unraveling the interplay between support material and the active sites. Applied Catalysis A: General, 2022, 636, 118577.	2.2	4
59	Comparative Analysis of Reactant and Product Adsorption Energies in the Selective Oxidative Coupling of Alcohols to Esters on Au(111). Topics in Catalysis, 2016, 59, 1383-1393.	1.3	3
60	Significance of the Mn-Oxidation State in Catalytic and Noncatalytic Promotional Effects of MnOx Domains in Formic Acid Dehydrogenation on Pd/MnOx Interfaces. Journal of Physical Chemistry C, 2020, 124, 22529-22538.	1.5	2
61	A Methodology to Discriminate Between Hydroxyl Radical-induced Processes and Direct Charge-transfer Reactions in Heterogeneous Photocatalysis. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	1
62	Influence of La and Si promoters on the anaerobic heterogeneous catalytic decomposition of ammonium dinitramide (ADN) via alumina supported iridium active sites. Applied Catalysis A: General, 2022, 632, 118500.	2.2	1
63	A Vibrational Spectroscopic Study of the CO + NO Reaction: From Pd Single Crystals at Ultrahigh Vacuum to Pd Clusters Supported on SiO2 Thin Films at Elevated Pressures. ACS Symposium Series, 2004, , 284-289.	0.5	Ο