Guosheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/92652/publications.pdf Version: 2024-02-01

CHOSHENC LL

#	Article	IF	CITATIONS
1	Crosslinked Polyethyleneimine Gel Polymer Interface to Improve Cycling Stability of RFBs. Energy Material Advances, 2022, 2022, .	4.7	3
2	A freeze-thaw molten salt battery for seasonal storage. Cell Reports Physical Science, 2022, 3, 100821.	2.8	5
3	Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 25534-25544.	4.0	8
4	Stabilizing Metallic Na Anodes via Sodiophilicity Regulation: A Review. Materials, 2022, 15, 4636.	1.3	6
5	High performance sodium-sulfur batteries at low temperature enabled by superior molten Na wettability. Chemical Communications, 2021, 57, 45-48.	2.2	19
6	Evaluating ZEBRA Battery Module under the Peak-Shaving Duty Cycles. Materials, 2021, 14, 2280.	1.3	12
7	Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries. Materials, 2021, 14, 3260.	1.3	16
8	Elucidating the role of anionic chemistry towards high-rate intermediate-temperature Na-metal halide batteries. Energy Storage Materials, 2020, 24, 177-187.	9.5	17
9	A Highâ€Performance Na–Al Battery Based on Reversible NaAlCl ₄ Catholyte. Advanced Energy Materials, 2020, 10, 2001378.	10.2	18
10	Elastic Na _{<i>x</i>} MoS ₂ -Carbon-BASE Triple Interface Direct Robust Solid–Solid Interface for All-Solid-State Na–S Batteries. Nano Letters, 2020, 20, 6837-6844.	4.5	29
11	Emerging soluble organic redox materials for next-generation grid energy-storage applications. MRS Communications, 2020, 10, 215-229.	0.8	4
12	Naâ€FeCl ₂ Batteries: A Lowâ€Cost Durable Naâ€FeCl ₂ Battery with Ultrahigh Rate Capability (Adv. Energy Mater. 10/2020). Advanced Energy Materials, 2020, 10, 2070042.	10.2	2
13	A Lowâ€Cost Durable Naâ€FeCl ₂ Battery with Ultrahigh Rate Capability. Advanced Energy Materials, 2020, 10, 1903472.	10.2	30
14	Regulating Interfacial Na-Ion Flux via Artificial Layers with Fast Ionic Conductivity for Stable and High-Rate Na Metal Batteries. , 2019, 1, 303-309.		27
15	Lithium Insertion Mechanism in Iron Fluoride Nanoparticles Prepared by Catalytic Decomposition of Fluoropolymer. ACS Applied Energy Materials, 2019, 2, 1832-1843.	2.5	21
16	Bismuth Islands for Low-Temperature Sodium-Beta Alumina Batteries. ACS Applied Materials & Interfaces, 2019, 11, 2917-2924.	4.0	31
17	"Niâ€Less―Cathodes for High Energy Density, Intermediate Temperature Na–NiCl 2 Batteries. Advanced Materials Interfaces, 2018, 5, 1701592.	1.9	33
18	An Intermediate-Temperature High-Performance Na–ZnCl ₂ Battery. ACS Omega, 2018, 3, 15702-15708.	1.6	20

#	Article	IF	CITATIONS
19	Decorating β′′-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures. Journal of Materials Chemistry A, 2018, 6, 19703-19711.	5.2	44
20	An advanced Na-NiCl2 battery using bi-layer (dense/micro-porous) βâ€3-alumina solid-state electrolytes. Journal of Power Sources, 2018, 396, 297-303.	4.0	30
21	Turning cooler. Nature Energy, 2018, 3, 714-715.	19.8	2
22	Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies. Journal of Power Sources, 2017, 348, 150-157.	4.0	36
23	A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy, 2017, 34, 188-194.	8.2	84
24	Advanced Na-NiCl ₂ Battery Using Nickel-Coated Graphite with Core–Shell Microarchitecture. ACS Applied Materials & Interfaces, 2017, 9, 11609-11614.	4.0	39
25	Steam gasification of a thermally pretreated high lignin corn stover simultaneous saccharification and fermentation digester residue. Energy, 2017, 119, 400-407.	4.5	4
26	Controlling Solid–Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc–Iodine Battery. ACS Energy Letters, 2017, 2, 2674-2680.	8.8	207
27	Effect of cathode thickness on the performance of planar Na-NiCl2 battery. Journal of Power Sources, 2017, 365, 456-462.	4.0	14
28	Enhanced Hydrothermal Stability and Catalytic Activity of La _{<i>x</i>} Zr _{<i>y</i>} O _{<i>z</i>} Mixed Oxides for the Ketonization of Acetic Acid in the Aqueous Condensed Phase. ACS Catalysis, 2017, 7, 6400-6412.	5.5	27
29	Molecular Storage of Mg Ions with Vanadium Oxide Nanoclusters. Advanced Functional Materials, 2016, 26, 3446-3453.	7.8	65
30	Rechargeable Mg–Li hybrid batteries: status and challenges. Journal of Materials Research, 2016, 31, 3125-3141.	1.2	92
31	Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo ₆ S ₈ Nanocubes and Applications for Advanced Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 13673-13677.	4.0	256
32	Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density. Nature Communications, 2016, 7, 10683.	5.8	92
33	A magnesium–sodium hybrid battery with high operating voltage. Chemical Communications, 2016, 52, 8263-8266.	2.2	48
34	Toward the design of high voltage magnesium–lithium hybrid batteries using dual-salt electrolytes. Chemical Communications, 2016, 52, 5379-5382.	2.2	60
35	Batteries: An Advanced Na–FeCl ₂ ZEBRA Battery for Stationary Energy Storage Application (Adv. Energy Mater. 12/2015). Advanced Energy Materials, 2015, 5, .	10.2	1
36	Interface Promoted Reversible Mg Insertion in Nanostructured Tin–Antimony Alloys. Advanced Materials, 2015, 27, 6598-6605.	11.1	88

#	Article	IF	CITATIONS
37	Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy, 2015, 12, 750-759.	8.2	121
38	Enhanced sintering of β″-Al2O3/YSZ with the sintering aids of TiO2 and MnO2. Journal of Power Sources, 2015, 295, 167-174.	4.0	27
39	An Advanced Na–FeCl ₂ ZEBRA Battery for Stationary Energy Storage Application. Advanced Energy Materials, 2015, 5, 1500357.	10.2	62
40	Highly active electrolytes for rechargeable Mg batteries based on a [Mg ₂ (1¼-Cl) ₂] ²⁺ cation complex in dimethoxyethane. Physical Chemistry Chemical Physics, 2015, 17, 13307-13314.	1.3	126
41	Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Communications, 2015, 6, 6303.	5.8	392
42	Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy. Applied Physics Letters, 2014, 104, .	1.5	10
43	Thermal stability of MnBi magnetic materials. Journal of Physics Condensed Matter, 2014, 26, 064212.	0.7	68
44	A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. Journal of Materials Chemistry A, 2014, 2, 3430.	5.2	197
45	Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175°C. Journal of Power Sources, 2014, 249, 414-417.	4.0	38
46	Effect of composition and heat treatment on MnBi magnetic materials. Acta Materialia, 2014, 79, 374-381.	3.8	83
47	The role of FeS in initial activation and performance degradation of Na–NiCl2 batteries. Journal of Power Sources, 2014, 272, 398-403.	4.0	29
48	Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage. Nature Communications, 2014, 5, 4578.	5.8	158
49	High performance batteries based on hybrid magnesium and lithium chemistry. Chemical Communications, 2014, 50, 9644-9646.	2.2	153
50	Development of MnBi permanent magnet: Neutron diffraction of MnBi powder. Journal of Applied Physics, 2014, 115, .	1.1	32
51	Facile Synthesis of <i>Chevrel</i> Phase Nanocubes and Their Applications for Multivalent Energy Storage. Chemistry of Materials, 2014, 26, 4904-4907.	3.2	73
52	Electrochemically stable cathode current collectors for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2014, 2, 2473-2477.	5.2	77
53	Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Nano Letters, 2014, 14, 255-260.	4.5	257
54	Advanced intermediate-temperature Na–S battery. Energy and Environmental Science, 2013, 6, 299-306.	15.6	149

#	Article	IF	CITATIONS
55	Cell degradation of a Na–NiCl2 (ZEBRA) battery. Journal of Materials Chemistry A, 2013, 1, 14935.	5.2	67
56	A novel low-cost sodium–zinc chloride battery. Energy and Environmental Science, 2013, 6, 1837.	15.6	50
57	Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance. Scientific Reports, 2013, 3, 3130.	1.6	157
58	The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries. Journal of Power Sources, 2012, 215, 288-295.	4.0	87
59	Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries. Journal of Power Sources, 2012, 220, 193-198.	4.0	48
60	Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. Journal of Materials Chemistry, 2011, 21, 10077.	6.7	112
61	Synergy of nuclear and electronic energy losses in ion-irradiation processes: The case of vitreous silicon dioxide. Physical Review B, 2011, 83, .	1.1	142
62	Accelerated cellulose depolymerization catalyzed by paired metal chlorides in ionic liquid solvent. Applied Catalysis A: General, 2011, 391, 436-442.	2.2	76
63	Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010, 20, 7491.	6.7	1,040
64	Catalyst Structure-Performance Relationship Identified by High-Throughput Operando Method: New Insight for Silica-Supported Vanadium Oxide for Methanol Oxidation. Topics in Catalysis, 2010, 53, 40-48.	1.3	4
65	[CuCl _{<i>n</i>}] ^{2â^'<i>n</i>} Ion-Pair Species in 1-Ethyl-3-methylimidazolium Chloride Ionic Liquidâ^'Water Mixtures: Ultravioletâ^'Visible, X-ray Absorption Fine Structure, and Density Functional Theory Characterization. Journal of Physical Chemistry B, 2010, 114, 12614-12622.	1.2	44
66	Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. Journal of Materials Chemistry, 2010, 20, 9193.	6.7	316
67	Response of nanocrystalline <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>3</mml:mn><mml:mi>C</mml:mi></mml:mrow></mml:math> silicon carbide to heavy-ion irradiation. Physical Review B, 2009, 80, .	1.1	66
68	Methanol Partial Oxidation on MoO3/SiO2 Catalysts: Application of Vibrational Spectroscopic Imaging Techniques in a High Throughput Operando Reactor. Topics in Catalysis, 2009, 52, 1381-1387.	1.3	14
69	Characteristics of Desulfation Behavior for Presulfated Pt-BaO/CeO2 Lean NOx Trap Catalyst: The Role of the CeO2 Support. Journal of Physical Chemistry C, 2009, 113, 21123-21129.	1.5	14
70	High throughputoperandostudies using Fourier transform infrared imaging and Raman spectroscopy. Review of Scientific Instruments, 2008, 79, 074101.	0.6	16
71	The mechanism of H-bond rupture: the vibrational pre-dissociation of C2H2–HCl and C2H2–DCl. Physical Chemistry Chemical Physics, 2007, 9, 6241.	1.3	18
72	Theoretical and Experimental Investigations of the Electronic Rydberg States of Diazomethane: Assignments and State Interactions. Journal of Physical Chemistry A, 2007, 111, 4557-4566.	1.1	9

#	Article	IF	CITATIONS
73	Imaging the State-Specific Vibrational Predissociation of the C2H2â^'NH3Hydrogen-Bonded Dimer. Journal of Physical Chemistry A, 2007, 111, 7589-7598.	1.1	25
74	Vibronic Structure and Ion Core Interactions in Rydberg States of Diazomethane:  An Experimental and Theoretical Investigation. Journal of Physical Chemistry A, 2007, 111, 13347-13357.	1.1	3
75	Imaging study of vibrational predissociation of the HCl–acetylene dimer: pair-correlated distributions. Physical Chemistry Chemical Physics, 2006, 8, 2915-2924.	1.3	20
76	State-to-state correlated study of CD3I photodissociation at 266 and 304nm. Journal of Chemical Physics, 2006, 124, 244306.	1.2	19
77	The photodissociation reaction dynamics of CF3I at 304nm (Q0+3, Q11â†Q0+3, and Q13). Journal of Chemical Physics, 2006, 125, 214312.	1.2	8
78	High resolution kinetic energy by long time-delayed core-sampling photofragment translational spectroscopy. Review of Scientific Instruments, 2005, 76, 023105.	0.6	28
79	State-to-State Reaction Dynamics of CH3I Photodissociation at 304 nm. Journal of Physical Chemistry A, 2005, 109, 9226-9231.	1.1	23