José Ãngel Mercado Carmona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9265058/publications.pdf

Version: 2024-02-01

73 papers

2,992 citations

172457 29 h-index 53 g-index

75 all docs

75 docs citations

75 times ranked 2755 citing authors

#	Article	IF	CITATIONS
1	Olive (Olea europaea L.) Genetic Transformation: Current Status and Future Prospects. Genes, 2021, 12, 386.	2.4	6
2	Ectopic expression of the atypical HLH FaPRE1 gene determines changes in cell size and morphology. Plant Science, 2021, 305, 110830.	3.6	6
3	Modification of 13-hydroperoxide lyase expression in olive affects plant growth and results in altered volatile profile. Plant Science, 2021, 313, 111083.	3.6	9
4	Elucidating the role of polygalacturonase genes in strawberry fruit softening. Journal of Experimental Botany, 2020, 71, 7103-7117.	4.8	41
5	Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening. Plants, 2020, 9, 805.	3.5	8
6	Heterologous Expression of the AtNPR1 Gene in Olive and Its Effects on Fungal Tolerance. Frontiers in Plant Science, 2020, 11 , 308 .	3.6	19
7	Fruit and Vegetable Texture: Role of Their Cell Walls. , 2019, , 1-7.		5
8	Plant Regeneration via Somatic Embryogenesis in Mature Wild Olive Genotypes Resistant to the Defoliating Pathotype of Verticillium dahliae. Frontiers in Plant Science, 2019, 10, 1471.	3.6	24
9	Isolation and culture of strawberry protoplasts and field evaluation of regenerated plants. Scientia Horticulturae, 2019, 256, 108552.	3.6	10
10	The Strawberry FaWRKY1 Transcription Factor Negatively Regulates Resistance to Colletotrichum acutatum in Fruit Upon Infection. Frontiers in Plant Science, 2019, 10, 480.	3.6	24
11	Use of fluorescent reporter genes in olive (Olea europaea L.) transformation. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	4
12	An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle. BMC Plant Biology, 2019, 19, 586.	3.6	13
13	A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science and Technology, 2019, 87, 47-58.	15.1	141
14	Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive. Frontiers in Plant Science, 2018, 9, 680.	3.6	20
15	The History and Current Status of Genetic Transformation in Berry Crops. Compendium of Plant Genomes, 2018, , 139-160.	0.5	3
16	Caracterización de indicadores de la calidad del fruto en lÃneas de fresa transgénicas con genes silenciados que codifican para enzimas pectinolÃŧicas. Revista Colombiana De BiotecnologÃa, 2018, 20, 42-50.	0.2	1
17	A possible role for flowering locus Tâ€encoding genes in interpreting environmental and internal cues affecting olive (<i>Olea europaea</i> L.) flower induction. Plant, Cell and Environment, 2017, 40, 1263-1280.	5.7	70
18	Unravelling the nanostructure of strawberry fruit pectins by endo-polygalacturonase digestion and atomic force microscopy. Food Chemistry, 2017, 224, 270-279.	8.2	40

#	Article	IF	Citations
19	Structural changes in cell wall pectins during strawberry fruit development. Plant Physiology and Biochemistry, 2017, 118, 55-63.	5.8	68
20	Agrobacterium-mediated transformation of avocado (Persea americana Mill.) somatic embryos with fluorescent marker genes and optimization of transgenic plant recovery. Plant Cell, Tissue and Organ Culture, 2017, 128, 447-455.	2.3	13
21	Generation and Selection of Transgenic Olive Plants. Bio-protocol, 2017, 7, e2611.	0.4	3
22	Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. Frontiers in Plant Science, 2016, 7, 1036.	3.6	55
23	Antisense down-regulation of the strawberry l²-galactosidase gene <i>Fal²-Gal4</i> increases cell wall galactose levels and reduces fruit softening. Journal of Experimental Botany, 2016, 67, 619-631.	4.8	122
24	The nanostructural characterization of strawberry pectins in pectate lyase or polygalacturonase silenced fruits elucidates their role in softening. Carbohydrate Polymers, 2015, 132, 134-145.	10.2	58
25	Expression of the \hat{l}^2 -1,3-glucanase gene bgn13.1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth. Transgenic Research, 2015, 24, 979-989.	2.4	35
26	Development of an efficient transient transformation protocol for avocado (Persea americana Mill.) embryogenic callus. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 292-298.	2.1	12
27	Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany, 2014, 114, 1375-1383.	2.9	177
28	EVALUATION OF THE EFFECT OF PHOSPHINOTHRICIN, AS SELECTION AGENT, ON THE GROWTH OF OLIVE SOMATIC EMBRYOS. Acta Horticulturae, 2014, , 533-542.	0.2	4
29	Enhancing frequency of regeneration of somatic embryos of avocado (Persea americana Mill.) using semi-permeable cellulose acetate membranes. Plant Cell, Tissue and Organ Culture, 2013, 115, 199-207.	2.3	9
30	The strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae. Journal of Experimental Botany, 2013, 64, 1471-1483.	4.8	83
31	Effect of simultaneous down-regulation of pectate lyase and endo-β-1,4-glucanase genes on strawberry fruit softening. Molecular Breeding, 2013, 31, 313-322.	2.1	20
32	Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits. Journal of Experimental Botany, 2013, 64, 3803-3815.	4.8	84
33	Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.). Plant Cell, Tissue and Organ Culture, 2012, 109, 201-211.	2.3	18
34	Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydrate Polymers, 2012, 88, 882-890.	10.2	116
35	IMPROVEMENT OF STRAWBERRY FRUIT SOFTENING THROUGH THE SILENCING OF CELL WALL GENES. Acta Horticulturae, 2012, , 107-110.	0.2	0
36	An efficient regeneration system via somatic embryogenesis in olive. Plant Cell, Tissue and Organ Culture, 2011, 106, 337-344.	2.3	46

#	Article	IF	Citations
37	Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell, Tissue and Organ Culture, 2010, 103, 61-69.	2.3	32
38	Evaluation of the role of the endo- \hat{l}^2 -(1,4)-glucanase gene FaEG3 in strawberry fruit softening. Postharvest Biology and Technology, 2010, 55, 8-14.	6.0	34
39	Antisense Down-Regulation of the <i>FaPG1 < /i> Gene Reveals an Unexpected Central Role for Polygalacturonase in Strawberry Fruit Softening Â. Plant Physiology, 2009, 150, 1022-1032.</i>	4.8	182
40	The polygalacturonase		

#	Article	IF	Citations
55	<i>Influence of sucrose concentration on</i> in vitro rooting, growth, endogenous sugars and <i>ex vitro</i> survival of juvenile avocado. Journal of Horticultural Science and Biotechnology, 2003, 78, 46-50.	1.9	8
56	PHYSIOLOGICAL INFLUENCE OF SUCROSE ON JUVENILE AVOCADO DURING ΙN VITRO CULTIVATION AND SUBSEQUENT ΕX VITRO ACCLIMATIZATION. Acta Horticulturae, 2003, , 421-424.	0.2	1
57	Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene. Plant Physiology, 2002, 128, 751-759.	4.8	309
58	Influences of exogenous sucrose on juvenile avocado during in vitro cultivation and subsequent ex vitro acclimatization. Trees - Structure and Function, 2002, 16, 569-575.	1.9	5
59	Effects of in vitro tissue culture conditions and acclimatization on the contents of Rubisco, leaf soluble proteins, photosynthetic pigments, and C/N ratio. Journal of Plant Physiology, 2001, 158, 835-840.	3.5	37
60	Title is missing!. Plant Cell, Tissue and Organ Culture, 2000, 62, 101-106.	2.3	14
61	Agrobacterium cells as microprojectile coating: a novel approach to enhance stable transformation rates in strawberry. Functional Plant Biology, 2000, 27, 1093.	2.1	11
62	Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiologia Plantarum, 1999, 106, 355-362.	5.2	65
63	Pollen sporopollenin: degradation and structural elucidation. Sexual Plant Reproduction, 1999, 12, 171-178.	2.2	158
64	A convenient protocol for extraction and purification of DNA from Fragaria. In Vitro Cellular and Developmental Biology - Plant, 1999, 35, 152-153.	2.1	25
65	Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell, Tissue and Organ Culture, 1998, 54, 29-36.	2.3	69
66	Isolation of intact pollen exine using anhydrous hydrogen fluoride. Grana, 1998, 37, 93-96.	0.8	36
67	Effects of low temperature on pepper pollen morphology and fertility: Evidence of cold induced exine alterations. The Journal of Horticultural Science, 1997, 72, 317-326.	0.3	48
68	Effects of hand-pollination, paclobutrazol treatments, root temperature and genotype on pollen viability and seed fruit content of winter-grown pepper. The Journal of Horticultural Science, 1997, 72, 893-900.	0.3	3
69	Metabolic Changes and Susceptibility to Chilling Stress in Capsicum annuum Plants Grown at Suboptimal Temperature. Functional Plant Biology, 1997, 24, 759.	2.1	23
70	Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L Plant Cell Reports, 1996, 15, 642-646.	5.6	61
71	Shoot regeneration and Agrobacterium -mediated transformation of Fragaria vesca L Plant Cell Reports, 1996, 15, 642-646.	5.6	9
72	STORAGE OF BELL PEPPERS IN CONTROLLED ATMOSPHERES AT CHILLING AND NONCHILLING TEMPERATURES. Acta Horticulturae, 1995, , 134-142.	0.2	10

JOSé ÃNGEL MERCADO

ARTICLE IF CITATIONS

73 In vitro germination of pepper pollen in liquid medium. Scientia Horticulturae, 1994, 57, 273-281. 3.6 30