José Ãngel Mercado Carmona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9265058/publications.pdf

Version: 2024-02-01

José Ãngel Mercado

#	Article	IF	CITATIONS
1	Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene. Plant Physiology, 2002, 128, 751-759.	4.8	309
2	Antisense Down-Regulation of the <i>FaPG1</i> Gene Reveals an Unexpected Central Role for Polygalacturonase in Strawberry Fruit Softening Â. Plant Physiology, 2009, 150, 1022-1032.	4.8	182
3	Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany, 2014, 114, 1375-1383.	2.9	177
4	Pollen sporopollenin: degradation and structural elucidation. Sexual Plant Reproduction, 1999, 12, 171-178.	2.2	158
5	A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science and Technology, 2019, 87, 47-58.	15.1	141
6	Antisense down-regulation of the strawberry β-galactosidase gene <i>FaβGal4</i> increases cell wall galactose levels and reduces fruit softening. Journal of Experimental Botany, 2016, 67, 619-631.	4.8	122
7	Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydrate Polymers, 2012, 88, 882-890.	10.2	116
8	Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. Journal of Experimental Botany, 2008, 59, 2769-2779.	4.8	109
9	Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits. Journal of Experimental Botany, 2013, 64, 3803-3815.	4.8	84
10	The strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae. Journal of Experimental Botany, 2013, 64, 1471-1483.	4.8	83
11	A possible role for flowering locus Tâ€encoding genes in interpreting environmental and internal cues affecting olive (<i>Olea europaea</i> L.) flower induction. Plant, Cell and Environment, 2017, 40, 1263-1280.	5.7	70
12	Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell, Tissue and Organ Culture, 1998, 54, 29-36.	2.3	69
13	Structural changes in cell wall pectins during strawberry fruit development. Plant Physiology and Biochemistry, 2017, 118, 55-63.	5.8	68
14	Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiologia Plantarum, 1999, 106, 355-362.	5.2	65
15	Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L Plant Cell Reports, 1996, 15, 642-646.	5.6	61
16	The nanostructural characterization of strawberry pectins in pectate lyase or polygalacturonase silenced fruits elucidates their role in softening. Carbohydrate Polymers, 2015, 132, 134-145.	10.2	58
17	Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. Frontiers in Plant Science, 2016, 7, 1036.	3.6	55
18	Effects of low temperature on pepper pollen morphology and fertility: Evidence of cold induced exine alterations. The Journal of Horticultural Science, 1997, 72, 317-326.	0.3	48

José Ãngel Mercado

#	Article	IF	CITATIONS
19	Structural and physiological changes in the roots of tomato plants over-expressing a basic peroxidase. Physiologia Plantarum, 2003, 118, 422-429.	5.2	47
20	An efficient regeneration system via somatic embryogenesis in olive. Plant Cell, Tissue and Organ Culture, 2011, 106, 337-344.	2.3	46
21	The polygalacturonase		

JOSé ÃNGEL MERCADO

#	Article	IF	CITATIONS
37	The Strawberry FaWRKY1 Transcription Factor Negatively Regulates Resistance to Colletotrichum acutatum in Fruit Upon Infection. Frontiers in Plant Science, 2019, 10, 480.	3.6	24
38	Metabolic Changes and Susceptibility to Chilling Stress in Capsicum annuum Plants Grown at Suboptimal Temperature. Functional Plant Biology, 1997, 24, 759.	2.1	23
39	Effect of simultaneous down-regulation of pectate lyase and endo-β-1,4-glucanase genes on strawberry fruit softening. Molecular Breeding, 2013, 31, 313-322.	2.1	20
40	Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive. Frontiers in Plant Science, 2018, 9, 680.	3.6	20
41	Changes in the water binding characteristics of the cell walls from transgenic Nicotiana tabacum leaves with enhanced levels of peroxidase activity. Physiologia Plantarum, 2004, 122, 504-512.	5.2	19
42	Heterologous Expression of the AtNPR1 Gene in Olive and Its Effects on Fungal Tolerance. Frontiers in Plant Science, 2020, 11, 308.	3.6	19
43	Rheological characterisation of juices obtained from transgenic pectate lyase-silenced strawberry fruits. Food Chemistry, 2009, 116, 426-432.	8.2	18
44	Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.). Plant Cell, Tissue and Organ Culture, 2012, 109, 201-211.	2.3	18
45	Title is missing!. Plant Cell, Tissue and Organ Culture, 2000, 62, 101-106.	2.3	14
46	EVALUATION OF TOLERANCE OF COLLETOTRICHUM ACUTATUM IN STRAWBERRY PLANTS TRANSFORMED WITH TRICHODERMA-DERIVED GENES. Acta Horticulturae, 2007, , 383-388.	0.2	14
47	Agrobacterium-mediated transformation of avocado (Persea americana Mill.) somatic embryos with fluorescent marker genes and optimization of transgenic plant recovery. Plant Cell, Tissue and Organ Culture, 2017, 128, 447-455.	2.3	13
48	An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle. BMC Plant Biology, 2019, 19, 586.	3.6	13
49	GENETIC TRANSFORMATION OF OLIVE SOMATIC EMBRYOS THROUGH BIOLISTICS. Acta Horticulturae, 2007, , 473-477.	0.2	12
50	Development of an efficient transient transformation protocol for avocado (Persea americana Mill.) embryogenic callus. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 292-298.	2.1	12
51	Agrobacterium cells as microprojectile coating: a novel approach to enhance stable transformation rates in strawberry. Functional Plant Biology, 2000, 27, 1093.	2.1	11
52	Isolation and culture of strawberry protoplasts and field evaluation of regenerated plants. Scientia Horticulturae, 2019, 256, 108552.	3.6	10
53	STORAGE OF BELL PEPPERS IN CONTROLLED ATMOSPHERES AT CHILLING AND NONCHILLING TEMPERATURES. Acta Horticulturae, 1995, , 134-142.	0.2	10
54	Enhancing frequency of regeneration of somatic embryos of avocado (Persea americana Mill.) using semi-permeable cellulose acetate membranes. Plant Cell, Tissue and Organ Culture, 2013, 115, 199-207.	2.3	9

JOSé ÃNGEL MERCADO

#	Article	IF	CITATIONS
55	Modification of 13-hydroperoxide lyase expression in olive affects plant growth and results in altered volatile profile. Plant Science, 2021, 313, 111083.	3.6	9
56	Shoot regeneration and Agrobacterium -mediated transformation of Fragaria vesca L Plant Cell Reports, 1996, 15, 642-646.	5.6	9
57	<i>Influence of sucrose concentration on</i> in vitro rooting, growth, endogenous sugars and <i>ex vitro</i> survival of juvenile avocado. Journal of Horticultural Science and Biotechnology, 2003, 78, 46-50.	1.9	8
58	Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening. Plants, 2020, 9, 805.	3.5	8
59	Olive (Olea europaea L.) Genetic Transformation: Current Status and Future Prospects. Genes, 2021, 12, 386.	2.4	6
60	Ectopic expression of the atypical HLH FaPRE1 gene determines changes in cell size and morphology. Plant Science, 2021, 305, 110830.	3.6	6
61	Influences of exogenous sucrose on juvenile avocado during in vitro cultivation and subsequent ex vitro acclimatization. Trees - Structure and Function, 2002, 16, 569-575.	1.9	5
62	POSTHARVEST BEHAVIOUR OF TRANSGENIC STRAWBERRY WITH POLYGALACTURONASE OR PECTATE LYASE GENES SILENCED. Acta Horticulturae, 2009, , 573-576.	0.2	5
63	Fruit and Vegetable Texture: Role of Their Cell Walls. , 2019, , 1-7.		5
64	AGROBACTERIUM-MEDIATED TRANSFORMATION OF OLIVE (OLEA EUROPAEA L.) EMBRYOGENIC CULTURES. Acta Horticulturae, 2009, , 387-391.	0.2	4
65	EVALUATION OF THE EFFECT OF PHOSPHINOTHRICIN, AS SELECTION AGENT, ON THE GROWTH OF OLIVE SOMATIC EMBRYOS. Acta Horticulturae, 2014, , 533-542.	0.2	4
66	Use of fluorescent reporter genes in olive (Olea europaea L.) transformation. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	4
67	EFFECT OF SILENCING OF CELL WALL DEGRADING ENZYMES ON STRAWBERRY FRUIT SOFTENING. Acta Horticulturae, 2009, , 931-934.	0.2	4
68	Effects of hand-pollination, paclobutrazol treatments, root temperature and genotype on pollen viability and seed fruit content of winter-grown pepper. The Journal of Horticultural Science, 1997, 72, 893-900.	0.3	3
69	The History and Current Status of Genetic Transformation in Berry Crops. Compendium of Plant Genomes, 2018, , 139-160.	0.5	3
70	Generation and Selection of Transgenic Olive Plants. Bio-protocol, 2017, 7, e2611.	0.4	3
71	PHYSIOLOGICAL INFLUENCE OF SUCROSE ON JUVENILE AVOCADO DURING ΙN VITRO CULTIVATION AND SUBSEQUENT ΕX VITRO ACCLIMATIZATION. Acta Horticulturae, 2003, , 421-424.	0.2	1
72	Caracterización de indicadores de la calidad del fruto en lÃneas de fresa transgénicas con genes silenciados que codifican para enzimas pectinolÃŧicas. Revista Colombiana De BiotecnologÃa, 2018, 20, 42-50.	0.2	1

#	Article	IF	CITATIONS
73	IMPROVEMENT OF STRAWBERRY FRUIT SOFTENING THROUGH THE SILENCING OF CELL WALL GENES. Acta Horticulturae, 2012, , 107-110.	0.2	0