Robert I Glazer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction of fibrosis and immune suppressive cells in ErbB2-dependent tumorigenesis by an LXR agonist. PLoS ONE, 2021, 16, e0248996.	2.5	5
2	Engineering a Novel 3D Printed Vascularized Tissue Model for Investigating Breast Cancer Metastasis to Bone. Advanced Healthcare Materials, 2020, 9, e1900924.	7.6	45
3	Plac1 Is a Key Regulator of the Inflammatory Response and Immune Tolerance In Mammary Tumorigenesis. Scientific Reports, 2018, 8, 5717.	3.3	13
4	PLAC1 as a serum biomarker for breast cancer. PLoS ONE, 2018, 13, e0192106.	2.5	19
5	MMTV-NeuT/ATTAC mice: a new model for studying the stromal tumor microenvironment. Oncotarget, 2018, 9, 8042-8053.	1.8	3
6	PPARs as determinants of the estrogen receptor lineage: use of synthetic lethality for the treatment of estrogen receptor-negative breast cancer. Oncotarget, 2017, 8, 50337-50341.	1.8	0
7	PPAR <i>δ</i> as a Metabolic Initiator of Mammary Neoplasia and Immune Tolerance. PPAR Research, 2016, 2016, 1-7.	2.4	6
8	3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study. ACS Applied Materials & Interfaces, 2016, 8, 30017-30026.	8.0	234
9	3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 69-79.	3.3	162
10	Efficacy of <i>N</i> -methanocarbathymidine against genital herpes simplex virus type 2 shedding and infection in guinea pigs. Antiviral Chemistry and Chemotherapy, 2015, 24, 19-27.	0.6	10
11	Multifactorial Analysis of Conditional Reprogramming of Human Keratinocytes. PLoS ONE, 2015, 10, e0116755.	2.5	18
12	Cellular Reprogramming of Epithelial Cells Leading to Conditional Immortalization is Accompanied by Changes in Multiple Pathways. FASEB Journal, 2015, 29, 670.6.	0.5	0
13	PPARδ Induces Estrogen Receptor-Positive Mammary Neoplasia through an Inflammatory and Metabolic Phenotype Linked to mTOR Activation. Cancer Research, 2013, 73, 4349-4361.	0.9	52
14	Stem Cell Antigen-1 Deficiency Enhances the Chemopreventive Effect of Peroxisome Proliferator–Activated Receptorγ Activation. Cancer Prevention Research, 2012, 5, 51-60.	1.5	12
15	Musashi1: an RBP with versatile functions in normal and cancer stem cells. Frontiers in Bioscience - Landmark, 2012, 17, 54.	3.0	50
16	Drug-Targeted Inhibition of Peroxisome Proliferator-Activated ReceptorÎ ³ Enhances the Chemopreventive Effect of Anti-Estrogen. Oncotarget, 2012, 3, 345-358.	1.8	18
17	Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (CDF10)–dependent TGF.β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7820-7825.	7.1	66
18	PPARδActivation Acts Cooperatively with 3-Phosphoinositide-Dependent Protein Kinase-1 to Enhance Mammary Tumorigenesis. PLoS ONE, 2011, 6, e16215.	2.5	40

ROBERT I GLAZER

#	Article	IF	CITATIONS
19	Stem cell antigenâ€l (Scaâ€l) disrupts GDF10/TGFâ€Î² signal transduction at the plasma membrane to regulate Smad2/3 nuclear signaling. FASEB Journal, 2011, 25, 243.5.	0.5	0
20	Induction of Metastatic Gastric Cancer by Peroxisome Proliferator-Activated ReceptorδActivation. PPAR Research, 2010, 2010, 1-12.	2.4	33
21	A new therapeutic basis for treating Li-Fraumeni Syndrome breast tumors expressing mutated TP53. Oncotarget, 2010, 1, 470-1.	1.8	5
22	Inhibition of Peroxisome Proliferator-Activated Receptor γ Increases Estrogen Receptor–Dependent Tumor Specification. Cancer Research, 2009, 69, 687-694.	0.9	39
23	Musashi1: A stem cell marker no longer in search of a function. Cell Cycle, 2008, 7, 2635-2639.	2.6	41
24	PPARÎ ³ and PPARδas Modulators of Neoplasia and Cell Fate. PPAR Research, 2008, 2008, 1-8.	2.4	19
25	Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biology, 2007, 8, R76.	9.6	1,009
26	Mammary stem and progenitor cell regulation. Cancer Biomarkers, 2007, 3, 171-181.	1.7	6
27	3-Phosphoinositide-Dependent Protein Kinase-1 Activates the Peroxisome Proliferator-Activated Receptor-γ and Promotes Adipocyte Differentiation. Molecular Endocrinology, 2006, 20, 268-278.	3.7	34
28	Peroxisome Proliferator-Activated Receptor δand γ Agonists Differentially Alter Tumor Differentiation and Progression during Mammary Carcinogenesis. Cancer Research, 2005, 65, 3950-3957.	0.9	99
29	An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation. Oncogene, 1999, 18, 4440-4449.	5.9	334
30	Georgetown Faculty Grievance. Science, 1999, 283, 487-487.	12.6	1
31	Sex Hormones Prolong the QT Interval and Downregulate Potassium Channel Expression in the Rabbit Heart. Circulation, 1996, 94, 1471-1474.	1.6	323
32	Antisense Expression of Protein Kinase Cα Inhibits the Growth and Tumorigenicity of Human Glioblastoma Cells. Neurosurgery, 1994, 35, 904-909.	1.1	54