Elisabetta Vegeto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9264941/publications.pdf

Version: 2024-02-01

		117571	168321
53	5,277	34	53
papers	citations	h-index	g-index
55	55	55	6036
33	33	33	0030
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sex-Specific Features of Microglia from Adult Mice. Cell Reports, 2018, 23, 3501-3511.	2.9	417
2	Estrogen Prevents the Lipopolysaccharide-Induced Inflammatory Response in Microglia. Journal of Neuroscience, 2001, 21, 1809-1818.	1.7	415
3	The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell, 1992, 69, 703-713.	13.5	388
4	17Î ² -Estradiol Inhibits Inflammatory Gene Expression by Controlling NF-Î ⁹ B Intracellular Localization. Molecular and Cellular Biology, 2005, 25, 2957-2968.	1.1	370
5	Estrogen receptor-Â mediates the brain antiinflammatory activity of estradiol. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9614-9619.	3.3	352
6	In vivo imaging of transcriptionally active estrogen receptors. Nature Medicine, 2003, 9, 82-86.	15.2	273
7	Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases. Frontiers in Neuroendocrinology, 2008, 29, 507-519.	2.5	261
8	Estrogens, Neuroinflammation, and Neurodegeneration. Endocrine Reviews, 2016, 37, 372-402.	8.9	254
9	Estrogens in the Nervous System: Mechanisms and Nonreproductive Functions. Annual Review of Physiology, 2004, 66, 291-313.	5.6	194
10	Estrogen accelerates the resolution of inflammation in macrophagic cells. Scientific Reports, 2015, 5, 15224.	1.6	183
11	Engineering of a Mouse for the in Vivo Profiling of Estrogen Receptor Activity. Molecular Endocrinology, 2001, 15, 1104-1113.	3.7	171
12	The human progesterone receptor A-form functions as a transcriptional modulator of mineralocorticoid receptor transcriptional acitivity. Journal of Steroid Biochemistry and Molecular Biology, 1994, 48, 425-432.	1.2	150
13	The Endogenous Estrogen Status Regulates Microglia Reactivity in Animal Models of Neuroinflammation. Endocrinology, 2006, 147, 2263-2272.	1.4	146
14	The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocrine Reviews, 2020, 41, 273-319.	8.9	118
15	Estrogen and progesterone induction of survival of monoblastoid cells undergoing TNFâ€Î±â€induced apoptosis. FASEB Journal, 1999, 13, 793-803.	0.2	111
16	Estrogen Action in Neuroprotection and Brain Inflammation. Annals of the New York Academy of Sciences, 2006, 1089, 302-323.	1.8	107
17	Regulation of the lipopolysaccharide signal transduction pathway by $17\hat{l}^2$ -estradiol in macrophage cells. Journal of Steroid Biochemistry and Molecular Biology, 2004, 91, 59-66.	1.2	93
18	Alternative Activation of Human Macrophages Is Rescued by Estrogen Treatment In Vitro and Impaired by Menopausal Status. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E50-E58.	1.8	89

#	Article	IF	CITATIONS
19	A Lack of Ovarian Function Increases Neuroinflammation in Aged Mice. Endocrinology, 2012, 153, 2777-2788.	1.4	76
20	Inducible Nitric Oxide Synthase Mediates Bone Loss in Ovariectomized Mice. Endocrinology, 2003, 144, 1098-1107.	1.4	71
21	Estrogen blocks inducible nitric oxide synthase accumulation in LPS-activated microglia cells. Experimental Gerontology, 2000, 35, 1309-1316.	1.2	66
22	$17\hat{l}^2$ -Estradiol Decreases Nitric Oxide Synthase II Synthesis in Vascular Smooth Muscle Cells*. Endocrinology, 1999, 140, 2004-2009.	1.4	62
23	Heterogeneous induction of microglia M2a phenotype by central administration of interleukin-4. Journal of Neuroinflammation, 2014, 11, 211.	3.1	62
24	Estrogen Receptor- \hat{l}_{\pm} as a Drug Target Candidate for Preventing Lung Inflammation. Endocrinology, 2010, 151, 174-184.	1.4	61
25	Estradiol Induces Differential Neuronal Phenotypes by Activating Estrogen Receptor \hat{l}^{\pm} or \hat{l}^21 . Endocrinology, 2000, 141, 1839-1845.	1.4	59
26	Self-renewal and phenotypic conversion are the main physiological responses of macrophages to the endogenous estrogen surge. Scientific Reports, 2017, 7, 44270.	1.6	58
27	Influence of Estrogen Modulation on Glia Activation in a Murine Model of Parkinson's Disease. Frontiers in Neuroscience, 2017, 11, 306.	1.4	58
28	Increased atherosclerosis and vascular inflammation in APP transgenic mice with apolipoprotein E deficiency. Atherosclerosis, 2010, 210, 78-87.	0.4	48
29	Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics, 2018, 8, 5400-5418.	4.6	48
30	Selective Agonists of Estrogen Receptor Isoforms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2192-2199.	1.1	46
31	Oligonucleotide Squelching Reveals the Mechanism of Estrogen Receptor Autologous Down-Regulation. Molecular Endocrinology, 1997, 11, 938-949.	3.7	41
32	Selective proliferative response of microglia to alternative polarization signals. Journal of Neuroinflammation, 2017, 14, 236.	3.1	39
33	Oestrogen Prevention of Neural Cell Death Correlates with Decreased Expression of mRNA for the Pro-Apoptotic Protein Nip-2. Journal of Neuroendocrinology, 2001, 12, 1051-1059.	1.2	38
34	SK-ER3 Neuroblastoma Cells as a Model for the Study of Estrogen Influence on Neural Cells. Brain Research Bulletin, 1997, 44, 519-523.	1.4	36
35	Estrogen Receptor α, a Molecular Switch Converting Transforming Growth Factor-α-mediated Proliferation into Differentiation in Neuroblastoma Cells. Journal of Biological Chemistry, 2003, 278, 31737-31744.	1.6	36
36	Selective estrogen receptorâ€Î± agonist provides widespread heart and vascular protection with enhanced endothelial progenitor cell mobilization in the absence of uterotrophic action. FASEB Journal, 2010, 24, 2262-2272.	0.2	34

#	Article	IF	CITATIONS
37	Estrogen neuroprotection: the involvement of the Bcl-2 binding protein BNIP2. Brain Research Reviews, 2001, 37, 335-342.	9.1	32
38	The estrogen–macrophage interplay in the homeostasis of the female reproductive tract. Human Reproduction Update, 2018, 24, 652-672.	5.2	32
39	Estradiol Induces Differential Neuronal Phenotypes by Activating Estrogen Receptor or Â. Endocrinology, 2000, 141, 1839-1845.	1.4	27
40	Estrogen Receptor Antagonist Fulvestrant (ICI 182,780) Inhibits the Anti-Inflammatory Effect of Glucocorticoids. Molecular Pharmacology, 2007, 71, 132-144.	1.0	23
41	Distinct Roles of Estrogen Receptor- $\hat{l}\pm$ and \hat{l}^2 in the Modulation of Vascular Inducible Nitric-Oxide Synthase in Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 174-182.	1.3	23
42	Traditional healthy mediterranean diet: estrogenic activity of plants used as food and flavoring agents. Phytotherapy Research, 2006, 20, 670-675.	2.8	18
43	Nuclear Hormone Receptors as Targets for New Drug Discovery. Nature Biotechnology, 1993, 11, 1256-1261.	9.4	17
44	Identification of estrogen target genes in human neural cells. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 319-325.	1.2	13
45	Inhibition of microglial \hat{l}^2 -glucocerebrosidase hampers the microglia-mediated antioxidant and protective response in neurons. Journal of Neuroinflammation, 2021, 18, 220.	3.1	11
46	The Molecular Pharmacology of Ovarian Steroid Receptors. Vitamins and Hormones, 1996, 52, 99-128.	0.7	10
47	Neglected markers: Altered serum proteome in murine models of disease. Proteomics, 2012, 12, 691-707.	1.3	9
48	Reciprocal interference between the NRF2 and LPS signaling pathways on the immuneâ€metabolic phenotype of peritoneal macrophages. Pharmacology Research and Perspectives, 2020, 8, e00638.	1.1	8
49	Tamoxifen Twists Again: On and Off-Targets in Macrophages and Infections. Frontiers in Pharmacology, 2022, 13, 879020.	1.6	8
50	$ER\hat{l}\pm\text{-independent NRF2-mediated immunoregulatory activity of tamoxifen.}$ Biomedicine and Pharmacotherapy, 2021, 144, 112274.	2.5	3
51	Are There Biological Bases for a Beneficial Effect of Estrogens in Neural Diseases?. Hormones and Behavior, 2001, 40, 203-209.	1.0	2
52	The Use of ERE-Luc Reporter Mice to Monitor Estrogen Receptor Transcriptional Activity in a Spatio-Temporal Dimension. Methods in Molecular Biology, 2022, 2418, 153-172.	0.4	1
53	Mechanisms of the Neuroprotective Effects of Estrogen. Medical Science Symposia Series, 2002, , 255-266.	0.0	0