Jakub Cieslak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926484/publications.pdf Version: 2024-02-01

IAKLIB CIESLAK

#	Article	IF	CITATIONS
1	Genetics of fat tissue accumulation in pigs: a comparative approach. Journal of Applied Genetics, 2010, 51, 153-168.	1.0	88
2	Genetic diversity in Hucul and Polish primitive horse breeds. Archives Animal Breeding, 2015, 58, 23-31.	0.5	25
3	SNPs in the porcine PPARGC1a gene: Interbreed differences and their phenotypic effects. Cellular and Molecular Biology Letters, 2007, 12, 231-9.	2.7	21
4	Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells. PLoS ONE, 2015, 10, e0139688.	1.1	16
5	Association studies on the porcine RETN, UCP1, UCP3 and ADRB3 genes polymorphism with fatness traits. Meat Science, 2009, 83, 551-554.	2.7	15
6	Polymorphisms in 5â€2-flanking regions of genes encoding adiponectin, leptin, and resistin are not associated with obesity of Polish children and adolescents. Molecular Biology Reports, 2011, 38, 1793-1798.	1.0	15
7	Missense mutations and polymorphisms of the MC4R gene in Polish obese children and adolescents in relation to the relative body mass index. Journal of Applied Genetics, 2011, 52, 319-323.	1.0	14
8	Association of MC3R gene polymorphisms with body weight in the red fox and comparative gene organization in four canids. Animal Genetics, 2011, 42, 104-107.	0.6	13
9	Effect of three common SNPs in 5′-flanking region of LEP and ADIPOQ genes on their expression in Polish obese children and adolescents. Molecular Biology Reports, 2012, 39, 3951-3955.	1.0	13
10	The pig <i>CART</i> (cocaineâ€and amphetamineâ€regulated transcript) gene and association of its microsatellite polymorphism with production traits. Journal of Animal Breeding and Genetics, 2009, 126, 37-42.	0.8	11
11	Three-Dimensional Arrangement of Genes Involved in Lipid Metabolism in Nuclei of Porcine Adipocytes and Fibroblasts in Relation to Their Transcription Level. Cytogenetic and Genome Research, 2012, 136, 295-302.	0.6	11
12	Common polymorphism (81Val>lle) and rare mutations (257Arg>Ser and 335lle>Ser) of the MC3R gene in obese Polish children and adolescents. Molecular Biology Reports, 2013, 40, 6893-6898.	1.0	11
13	Variability of lysozyme and lactoferrin bioactive protein concentrations in equine milk in relation to <i><scp>LYZ</scp></i> and <i><scp>LTF</scp></i> gene polymorphisms and expression. Journal of the Science of Food and Agriculture, 2017, 97, 2174-2181.	1.7	11
14	5'-flanking variants of equine casein genes (CSN1S1, CSN1S2, CSN2, CSN3) and their relationship with gene expression and milk composition. Journal of Applied Genetics, 2019, 60, 71-78.	1.0	11
15	Genes encoding equine β-lactoglobulin (LGB1 and LGB2): Polymorphism, expression, and impact on milk composition. PLoS ONE, 2020, 15, e0232066.	1.1	10
16	Polymorphisms in the promoter region of the adiponectin (<scp><i>ADIPOQ</i></scp>) gene are presumably associated with transcription level and carcass traits in pigs. Animal Genetics, 2013, 44, 340-343.	0.6	8
17	Characterization of the Polish Primitive Horse (Konik) maternal lines using mitochondrial D-loop sequence variation. PeerJ, 2017, 5, e3714.	0.9	7
18	TBX3 and ASIP genotypes reveal discrepancies in officially recorded coat colors of Hucul horses. Animal, 2019, 13, 1811-1816.	1.3	5

JAKUB CIESLAK

#	Article	IF	CITATIONS
19	The equine graying with age mutation of the <i>STX17</i> gene: A copy number study using droplet digital PCR reveals a new pattern. Animal Genetics, 2021, 52, 223-227.	0.6	5
20	ldentification of target sequences for association studies - analysis of the pig <i>FABP3</i> and <i>FABP4</i> loci using comparative genomics methods. Journal of Animal and Feed Sciences, 2008, 17, 191-201.	0.4	5
21	5'-flanking variants of the equine α-lactalbumin (<i>LALBA</i>) gene – relationship with gene expression and mare's milk composition. Journal of Animal and Feed Sciences, 2018, 27, 317-326.	0.4	5
22	Characterization of equine CSN1S2 variants considering genetics, transcriptomics, and proteomics. Journal of Dairy Science, 2016, 99, 1277-1285.	1.4	4
23	Betweenâ€breed variation in frequency of five novel missense SNPs in porcine <i>casein beta</i> (<i>CSN2</i>) and <i>casein kappa</i> (<i>CSN3</i>) genes. Animal Genetics, 2012, 43, 363-364.	0.6	3
24	Interbreed Distribution of the Myostatin (MSTN) Gene 5′-Flanking Variants and Their Relationship With Horse Biometric Traits. Journal of Equine Veterinary Science, 2018, 60, 83-89.e1.	0.4	3
25	Genetic Background of the Polish Primitive Horse (Konik) Coat Color Variation—New Insight into Dun Dilution Phenotypic Effect. Journal of Heredity, 2021, 112, 436-442.	1.0	2
26	Equine <i>STX17</i> intronic triplication confirmed by droplet digital PCR analysis of its breakpoints. Animal Genetics, 2021, 52, 567-568.	0.6	0