Zheng-Xiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9264567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 2008, 160, 179-210.	1.2	2,747
2	Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 2007, 35, 179.	2.0	1,655
3	Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 2003, 122, 85-109.	1.2	1,020
4	History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 2003, 122, 141-158.	1.2	969
5	Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 2009, 174, 117-128.	1.2	857
6	The breakup of Rodinia: did it start with a mantle plume beneath South China?. Earth and Planetary Science Letters, 1999, 173, 171-181.	1.8	739
7	Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 2002, 30, 163.	2.0	723
8	Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma?. Precambrian Research, 2003, 122, 45-83.	1.2	719
9	South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia?. Geology, 1995, 23, 407.	2.0	673
10	U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?. Lithos, 2007, 96, 186-204.	0.6	654
11	Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Bulletin of the Geological Society of America, 2010, 122, 772-793.	1.6	542
12	Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 2007, 96, 127-150.	0.6	510
13	U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 2002, 113, 135-154.	1.2	492
14	An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews, 2001, 53, 237-277.	4.0	482
15	Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 2012, 353-354, 145-155.	1.8	434
16	Global record of 1600–700Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 2008, 160, 159-178.	1.2	425
17	Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology, 2013, 294, 219-232.	1.0	406
18	Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Research, 2014, 244, 207-225.	1.2	389

#	Article	IF	CITATIONS
19	850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 2008, 102, 341-357.	0.6	378
20	Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology, 1993, 21, 889.	2.0	351
21	SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 2007, 12, 144-156.	3.0	334
22	Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. Journal of Geology, 2006, 114, 341-353.	0.7	327
23	Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 1994, 22, 739.	2.0	317
24	Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research, 2006, 151, 79-100.	1.2	314
25	Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics, 2012, 532-535, 271-290.	0.9	307
26	Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west) Tj ETQq0 C) 0 rg,BT /O	verboode 10 Tf
27	A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 277, 158-172.	1.0	302
28	Geochemistry of the 755Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?. Precambrian Research, 2006, 146, 1-15.	1.2	289
29	Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U–Pb detrital zircon provenance constraints. Precambrian Research, 2007, 159, 79-94.	1.2	275
30	Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 2005, 136, 51-66.	1.2	274
31	Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences, 1996, 43, 593-604.	0.4	266
32	SHRIMP zircon U–Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research, 2009, 168, 247-258.	1.2	266
33	Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters, 2007, 261, 551-564.	1.8	253
34	The oldest known rocks in south–western China: SHRIMP U–Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 2008, 33, 289-302.	1.0	246
35	On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Science Bulletin, 2007, 52, 1873-1885.	1.7	230
36	Supercontinent–superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Physics of the Earth and Planetary Interiors, 2009, 176, 143-156.	0.7	229

#	Article	IF	CITATIONS
37	A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth and Planetary Science Letters, 2004, 220, 409-421.	1.8	224
38	Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 2009, 35, 167-179.	1.0	222
39	Revisiting the "Yanbian Terraneâ€: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research, 2006, 151, 14-30.	1.2	217
40	Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro-∏G–potassic granite suite and Paleoproterozoic metamorphic belt. Journal of Asian Earth Sciences, 2012, 47, 5-20.	1.0	217
41	Neoproterozoic ultramafic–mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications. Precambrian Research, 2007, 152, 149-169.	1.2	216
42	Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 2016, 446, 89-99.	1.8	215
43	Formation of high Â18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology, 2011, 39, 903-906.	2.0	214
44	Obduction-type granites within the NE Jiangxi Ophiolite: Implications for the final amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 2008, 13, 288-301.	3.0	213
45	Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth and Planetary Science Letters, 2001, 187, 83-93.	1.8	210
46	The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U–Pb, Lu–Hf and O isotope analyses of detrital zircons. Chemical Geology, 2012, 328, 195-207.	1.4	209
47	Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: a Consequence of a Young Thermal Mantle Plume close to Subduction Zones?. Journal of Petrology, 2012, 53, 177-233.	1.1	207
48	Detrital zircon U–Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis. Gondwana Research, 2014, 25, 1202-1215.	3.0	205
49	The Bikou basalts in the northwestern Yangtze block, South China: Remnants of 820-810 Ma continental flood basalts?. Bulletin of the Geological Society of America, 2008, 120, 1478-1492.	1.6	201
50	Revisiting the "C-type adakites―of the Lower Yangtze River Belt, central eastern China: In-situ zircon Hf–O isotope and geochemical constraints. Chemical Geology, 2013, 345, 1-15.	1.4	186
51	South Australian record of a Rodinian epicontinental basin and its mid-neoproterozoic breakup (â^1⁄4700) Tj ETQo	41 <u>1 9</u> .784	4314 rgBT /O∖ 183
52	Was Cathaysia part of Proterozoic Laurentia? – new data from Hainan Island, south China. Terra Nova, 2008, 20, 154-164.	0.9	177
53	Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications. Journal of Petrology, 2013, 54, 1309-1348.	1.1	170
54	Ca. 825 Ma komatiitic basalts in South China: First evidence for >1500 °C mantle melts by a Rodinian mantle plume. Geology, 2007, 35, 1103.	2.0	165

#	Article	IF	CITATIONS
55	Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit: Associated with the â^1⁄4825 Ma south China mantle plume?. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	160
56	Petrology, geochronology and geochemistry of ca. 780Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research, 2010, 178, 185-208.	1.2	159
57	Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume?. Lithos, 2010, 119, 537-552.	0.6	156
58	A Permian Layered Intrusive Complex in the Western Tarim Block, Northwestern China: Product of a Ca. 275â€Ma Mantle Plume?. Journal of Geology, 2008, 116, 269-287.	0.7	152
59	Late Neoproterozoic 40Â intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia. Geology, 2011, 39, 39-42.	2.0	146
60	Intracontinental Eocene-Oligocene Porphyry Cu Mineral Systems of Yunnan, Western Yangtze Craton, China: Compositional Characteristics, Sources, and Implications for Continental Collision Metallogeny. Economic Geology, 2013, 108, 1541-1576.	1.8	144
61	A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume?. Bulletin of the Geological Society of America, 2010, 122, 2020-2040.	1.6	140
62	Late Cretaceous (100–89Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 2013, 175-176, 315-332.	0.6	139
63	A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambrian Research, 2000, 100, 313-334.	1.2	138
64	Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China: A review. Gondwana Research, 2009, 15, 381-395.	3.0	138
65	Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model. Lithos, 2012, 132-133, 127-140.	0.6	138
66	Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu–Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-collisional setting. Lithos, 2010, 119, 393-411.	0.6	137
67	An early Paleoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China: Age, geochemistry, and tectonic implications. Gondwana Research, 2007, 12, 101-112.	3.0	134
68	Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth and Planetary Science Letters, 2013, 377-378, 248-259.	1.8	134
69	Asthenosphere–lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr–Nd–Hf–Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters, 2012, 329-330, 84-96.	1.8	131
70	Episodic Precambrian crust growth: Evidence from U–Pb ages and Hf–O isotopes of zircon in the Nanhua Basin, central South China. Precambrian Research, 2012, 222-223, 386-403.	1.2	129
71	Early Late Cretaceous (ca. 93Ma) norites and hornblendites in the Milin area, eastern Gangdese: Lithosphere–asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80Ma) magmatic "flare-up―in southern Lhasa (Tibet). Lithos, 2013, 172-173, 17-30.	0.6	129
72	Synorogenic hydrothermal origin for giant Hamersley iron oxide ore bodies. Geology, 1999, 27, 175.	2.0	128

#	Article	IF	CITATIONS
73	Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research, 2007, 12, 184-197.	3.0	127
74	Post-kinematic lithospheric delamination of the Wuyi–Yunkai orogen in South China: Evidence from ca. 435Ma high-Mg basalts. Lithos, 2012, 154, 115-129.	0.6	126
75	Zircon SHRIMP U–Pb geochronology of potassic felsic intrusions in western Yunnan, SW China: Constraints on the relationship of magmatism to the Jinsha suture. Gondwana Research, 2012, 22, 737-747.	3.0	121
76	Age and origin of high Ba–Sr appinite–granites at the northwestern margin of the Tibet Plateau: Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondwana Research, 2008, 13, 126-138.	3.0	120
77	Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 2019, 323, 1-5.	1.2	115
78	A model for the evolution of the Earth's mantle structure since the Early Paleozoic. Journal of Geophysical Research, 2010, 115, .	3.3	113
79	From Rodinia to Gondwanaland: A tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China. Numerische Mathematik, 2014, 314, 278-313.	0.7	113
80	Late Carboniferous high εNd(t)–εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 2012, 140-141, 86-102.	0.6	111
81	Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~91–30Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese. Lithos, 2014, 196-197, 213-231.	0.6	111
82	Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: Mantle source and tectonic implications. Lithos, 2015, 233, 139-161.	0.6	108
83	Ca. 850 Ma bimodal volcanic rocks in northeastern Jiangxi Province, South China: Initial extension during the breakup of Rodinia?. Numerische Mathematik, 2010, 310, 951-980.	0.7	107
84	A plate-tectonic speed limit?. Nature, 1993, 363, 216-217.	13.7	104
85	A pre-2.2 Ga age for giant hematite ores of the Hamersley Province, Australia?. Economic Geology, 1998, 93, 1084-1090.	1.8	104
86	The supercontinent cycle. Nature Reviews Earth & Environment, 2021, 2, 358-374.	12.2	102
87	Eocene north–south trending dikes in central Tibet: New constraints on the timing of east–west extension with implications for early plateau uplift?. Earth and Planetary Science Letters, 2010, 298, 205-216.	1.8	101
88	Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos, 2011, 126, 54-67.	0.6	100
89	Ca. 1.5Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia: The Zhuqing Fe–Ti–V oxide ore-bearing mafic intrusions in western Yangtze Block. Lithos, 2013, 168-169, 85-98.	0.6	99
90	Neoproterozoic Bimodal Intrusive Complex in the Southwestern Tarim Block, Northwest China: Age, Geochemistry, and Implications for the Rifting of Rodinia. International Geology Review, 2006, 48, 112-128.	1.1	98

#	Article	IF	CITATIONS
91	The magnificent seven: A proposal for modest revision of the quality index. Tectonophysics, 2020, 790, 228549.	0.9	97
92	Assembly and Breakup of Rodinia (Some results of IGCP project 440). Stratigraphy and Geological Correlation, 2009, 17, 259-274.	0.2	95
93	Late Cretaceous (ca. 90Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet): Slab melting and implications for Cu–Au mineralization. Journal of Asian Earth Sciences, 2012, 53, 67-81.	1.0	92
94	Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 2016, 7, 11888.	5.8	90
95	Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, 2016, 440, 101-114.	1.4	89
96	Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn. Precambrian Research, 2013, 224, 11-22.	1.2	87
97	Recycling oceanic crust for continental crustal growth: Sr–Nd–Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 2012, 128-131, 73-83.	0.6	85
98	Crustal Melting and Flow beneath Northern Tibet: Evidence from Mid-Miocene to Quaternary Strongly Peraluminous Rhyolites in the Southern Kunlun Range. Journal of Petrology, 2012, 53, 2523-2566.	1.1	83
99	Detrital provenance evolution of the Ediacaran–Silurian Nanhua foreland basin, South China. Gondwana Research, 2015, 28, 1449-1465.	3.0	80
100	Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 2014, 196-197, 321-338.	0.6	79
101	The 600–580Ma continental rift basalts in North Qilian Shan, northwest China: Links between the Qilian-Qaidam block and SE Australia, and the reconstruction of East Gondwana. Precambrian Research, 2015, 257, 47-64.	1.2	79
102	Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9–2.6†Ga granitic rocks in the Zhongxiang Complex. Precambrian Research, 2018, 314, 325-352.	1.2	79
103	New Precambrian palaeomagnetic constraints on the position of the North China Block in Rodinia. Precambrian Research, 2006, 144, 213-238.	1.2	78
104	1.6 Ga crustal thickening along the final Nuna suture. Geology, 2018, 46, 959-962.	2.0	76
105	Geochemical and Hf–Nd isotope data of Nanhua rift sedimentary and volcaniclastic rocks indicate a Neoproterozoic continental flood basalt provenance. Lithos, 2011, 127, 427-440.	0.6	74
106	Intraplate crustal remelting as the genesis of Jurassic high-K granites in the coastal region of the Guangdong Province, SE China. Journal of Asian Earth Sciences, 2013, 74, 280-302.	1.0	73
107	Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna. Geology, 2018, 46, 251-254.	2.0	72
108	Review of seafloor spreading around Australia. II. Marine magnetic anomaly modelling. Australian Journal of Earth Sciences, 1991, 38, 391-408.	0.4	71

#	Article	IF	CITATIONS
109	Seismic reflection data support episodic and simultaneous growth of the Tibetan Plateau since 25 Myr. Nature Communications, 2014, 5, 5453.	5.8	71
110	A Mesozoic Andean-type orogenic cycle in southeastern China as recorded by granitoid evolution. Numerische Mathematik, 2014, 314, 187-234.	0.7	68
111	Proterozoic tectonics of Hainan Island in supercontinent cycles: New insights from geochronological and isotopic results. Precambrian Research, 2017, 290, 86-100.	1.2	68
112	Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. Geology, 2021, 49, 174-179.	2.0	66
113	Late Early Cretaceous adakitic granitoids and associated magnesian and potassiumâ€rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization. Chemical Geology, 2012, 328, 222-243.	1.4	65
114	Palaeomagnetic evidence for unification of the North and West Australian cratons by ca.1.7 Ga: new results from the Kimberley Basin of northwestern Australia. Geophysical Journal International, 2000, 142, 173-180.	1.0	64
115	Permo-Triassic magnetostratigraphy in China: the type section near Taiyuan, Shanxi Province, North China. Geophysical Journal International, 1996, 126, 382-388.	1.0	63
116	Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China: petrogenesis and tectonic significance. Geological Magazine, 2008, 145, 475-489.	0.9	63
117	Nonglacial origin for low-Â18O Neoproterozoic magmas in the South China Block: Evidence from new in-situ oxygen isotope analyses using SIMS. Geology, 2011, 39, 735-738.	2.0	63
118	SIMS zircon U–Pb ages, geochemistry and Nd–Hf isotopes of ca. 1.0Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance. Precambrian Research, 2016, 273, 67-89.	1.2	63
119	The Willouran basic province of South Australia: Its relation to the Guibei large igneous province in South China and the breakup of Rodinia. Lithos, 2010, 119, 569-584.	0.6	61
120	Tectonostratigraphic history of the Ediacaran–Silurian Nanhua foreland basin in South China. Tectonophysics, 2016, 674, 31-51.	0.9	61
121	Four-dimensional context of Earth's supercontinents. Geological Society Special Publication, 2016, 424, 1-14.	0.8	58
122	The dominant driving force for supercontinent breakup: Plume push or subduction retreat?. Geoscience Frontiers, 2018, 9, 997-1007.	4.3	58
123	Uplift of the West Kunlun Range, northern Tibetan Plateau, dominated by brittle thickening of the upper crust. Geology, 2013, 41, 439-442.	2.0	57
124	Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China. Lithos, 2016, 256-257, 311-330.	0.6	56
125	New palaeomagnetic results from the â€~cap dolomite' of the Neoproterozoic Walsh Tillite, northwestern Australia. Precambrian Research, 2000, 100, 359-370.	1.2	55
126	Metasomatized lithosphere–asthenosphere interaction during slab roll-back: Evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos, 2012, 155, 67-80.	0.6	54

#	Article	IF	CITATIONS
127	New paleomagnetic results from the Yangzhuang Formation of the Jixian System, North China, and tectonic implications. Science Bulletin, 2005, 50, 1483.	1.7	53
128	Reconstruction of the Panthalassan margin of Gondwanaland. Memoir of the Geological Society of America, 1994, , 5-10.	0.5	52
129	Formation of the Jurassic South China Large Granitic Province: Insights from the genesis of the Jiufeng pluton. Chemical Geology, 2015, 401, 43-58.	1.4	51
130	Onset of aridity in southern Western Australia—a preliminary palaeomagnetic appraisal. Global and Planetary Change, 1998, 18, 175-187.	1.6	50
131	Age and paleomagnetism of the 1210Ma Gnowangerup–Fraser dyke swarm, Western Australia, and implications for late Mesoproterozoic paleogeography. Precambrian Research, 2014, 246, 1-15.	1.2	50
132	Precambrian tectonics of East Asia and relevance to supercontinent evolution. Precambrian Research, 2003, 122, 1-6.	1.2	49
133	Late Triassic melting of a thickened crust in southeastern China: Evidence for flat-slab subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 2013, 74, 265-279.	1.0	49
134	Subduction of Indian continent beneath southern Tibet in the latest Eocene (~ 35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 2017, 41, 77-92.	3.0	49
135	Genesis of the 1.21 Ga Marnda Moorn large igneous province by plume–lithosphere interaction. Precambrian Research, 2014, 241, 85-103.	1.2	47
136	TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia. Earth and Planetary Science Letters, 2020, 550, 116548.	1.8	45
137	Australian Palaeozoic palaeomagnetism and tectonics—II. A revised apparent polar wander path and palaeogeography. Journal of Structural Geology, 1990, 12, 567-575.	1.0	44
138	Was there a Cambrian ocean in South China? – Insight from detrital provenance analyses. Geological Magazine, 2015, 152, 184-191.	0.9	44
139	Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia) – A two-stage assembly of the supercontinent Nuna?. Precambrian Research, 2019, 329, 170-181.	1.2	43
140	Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nature Communications, 2019, 10, 5103.	5.8	42
141	Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology, 2020, 48, 159-163.	2.0	42
142	Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 2020, 13, 511-515.	5.4	42
143	Australian Palaeozoic palaeomagnetism and tectonics—I. Tectonostratigraphic terrane constraints from the Tasman Fold Belt. Journal of Structural Geology, 1990, 12, 553-565.	1.0	40
144	Early Mesozoic ferroan (A-type) and magnesian granitoids in eastern South China: Tracing the influence of flat-slab subduction at the western Pacific margin. Lithos, 2016, 240-243, 371-381.	0.6	40

#	Article	IF	CITATIONS
145	Palaeomagnetism of the Brewer Conglomerate in central Australia, and fast movement of Gondwanaland during the Late Devonian. Geophysical Journal International, 1993, 115, 564-574.	1.0	38
146	New paleomagnetic results from the Neoproterozoic successions in southern North China Block and paleogeographic implications. Science in China Series D: Earth Sciences, 2000, 43, 233-244.	0.9	38
147	Paleogeographic forcing of the strontium isotopic cycle in the Neoproterozoic. Gondwana Research, 2017, 42, 151-162.	3.0	38
148	A palaeomagnetic study of Empress 1A, a stratigraphic drillhole in the Officer Basin: evidence for a low-latitude position of Australia in the Neoproterozoic. Precambrian Research, 2001, 110, 93-108.	1.2	36
149	Reliability of Palaeozoic palaeomagnetic poles and APWP of Gondwanaland. Tectonophysics, 1990, 184, 87-100.	0.9	35
150	Multiple <i>P–T–d–t</i> paths reveal the evolution of the final Nuna assembly in northeast Australia. Journal of Metamorphic Geology, 2020, 38, 593-627.	1.6	35
151	Archean geodynamics: Ephemeral supercontinents or long-lived supercratons. Geology, 2021, 49, 794-798.	2.0	35
152	Relationship between northwestern Tasmania and East Gondwanaland in the Late Cambrian/Early Ordovician: Paleomagnetic evidence. Tectonics, 1997, 16, 161-171.	1.3	34
153	Sequence Stratigraphy and Evolution of the Neoproterozoic Marginal Basins Along Southeastern Yangtze Craton, South China. Gondwana Research, 2001, 4, 17-26.	3.0	34
154	Formation of mantle "lone plumes―in the global downwelling zone — A multiscale modelling of subduction-controlled plume generation beneath the South China Sea. Tectonophysics, 2018, 723, 1-13.	0.9	34
155	Pannotia: in defence of its existence and geodynamic significance. Geological Society Special Publication, 2021, 503, 13-39.	0.8	34
156	Palaeomagnetic results from the ca. 1130 Ma Borgmassivet intrusions in the Ahlmannryggen region of Dronning Maud Land, Antarctica, and tectonic implications. Tectonophysics, 2003, 375, 247-260.	0.9	33
157	Paleomagnetism of the Hervey Group, Central New South Wales and its tectonic implications. Tectonics, 1988, 7, 351-367.	1.3	32
158	Vertical-axis block rotations in southwestern China since the Cretaceous: New Paleomagnetic results from Hainan Island. Geophysical Research Letters, 1995, 22, 3071-3074.	1.5	31
159	SHRIMP U-Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation, Zunyi, South China. Science Bulletin, 2008, 53, 576-583.	1.7	31
160	Timing and Genesis of Hamersley Iron-ore Deposits. Exploration Geophysics, 1993, 24, 631-636.	0.5	30
161	Reply to the comment by Zhou et al. on: "Revisiting the "Yanbian Terrane― Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China―[Precambrian Res. 151 (2006) 14–30] [Precambrian Res. 154 (2007) 153–157]. Precambrian Research, 2007, 155, 318-323.	1.2	29
162	Harmonic hierarchy of mantle and lithospheric convective cycles: Time series analysis of hafnium isotopes of zircon. Gondwana Research, 2019, 75, 239-248.	3.0	29

#	Article	IF	CITATIONS
163	The amalgamation of Pangea: Paleomagnetic and geological observations revisited. Bulletin of the Geological Society of America, 2021, 133, 625-646.	1.6	29
164	Palaeomagnetic dating and tectonic significance of dolerite intrusions in the Albany Mobile Belt, Western Australia. Earth and Planetary Science Letters, 1995, 131, 143-164.	1.8	28
165	Detrital zircon U–Pb geochronology, Hf isotopes and geochemistry constraints on crustal growth and Mesozoic tectonics of southeastern China. Journal of Asian Earth Sciences, 2015, 105, 286-299.	1.0	27
166	Newly identified 1.89â€ ⁻ Ca mafic dyke swarm in the Archean Yilgarn Craton, Western Australia suggests a connection with India. Precambrian Research, 2019, 329, 156-169.	1.2	27
167	Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics. Scientific Reports, 2020, 10, 9461.	1.6	27
168	Palaeomagnetism and geochronology of mid-Neoproterozoic Yanbian dykes, South China: implications for a <i>c.</i> 820–800 Ma true polar wander event and the reconstruction of Rodinia. Geological Society Special Publication, 2016, 424, 191-211.	0.8	26
169	Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle. Nature Communications, 2019, 10, 5270.	5.8	26
170	A Mesozoic Andean-type active continental margin along coastal South China: New geological records from the basement of the northern South China Sea. Gondwana Research, 2021, 99, 36-52.	3.0	26
171	An Early Carboniferous paleomagnetic pole for Gondwanaland: New results from the Mount Eclipse Sandstone in the Ngalia Basin, central Australia. Journal of Geophysical Research, 1994, 99, 2909-2924.	3.3	25
172	Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: Implications for continental collision and lithospheric thinning. Tectonophysics, 2017, 712-713, 10-29.	0.9	25
173	Syn-deformational remanent magnetization of the Mount Eclipse Sandstone, central Australia. Geophysical Journal International, 1989, 99, 205-222.	1.0	24
174	Reply to the comment: Mantle plume-, but not arc-related Neoproterozoic magmatism in South China. Precambrian Research, 2004, 132, 405-407.	1.2	24
175	Thermochronological record of Middle–Late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block. Gondwana Research, 2017, 46, 191-203.	3.0	24
176	Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Communications Earth & Environment, 2020, 1, .	2.6	23
177	Stratigraphic evolution of a Late Triassic to Early Jurassic intracontinental basin in southeastern South China: A consequence of flat-slab subduction?. Sedimentary Geology, 2014, 302, 44-63.	1.0	22
178	Post-250†Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-Western Pacific margin. Gondwana Research, 2019, 75, 1-15.	3.0	22
179	Palaeomagnetism of the 1.89â€ ⁻ Ga Boonadgin dykes of the Yilgarn Craton: Possible connection with India. Precambrian Research, 2019, 329, 211-223.	1.2	21
180	Modeling the Inception of Supercontinent Breakup: Stress State and the Importance of Orogens. Geochemistry, Geophysics, Geosystems, 2019, 20, 4830-4848.	1.0	21

#	Article	IF	CITATIONS
181	Long-lived connection between the North China and North Australian cratons in supercontinent Nuna: paleomagnetic and geological constraints. Science Bulletin, 2019, 64, 873-876.	4.3	21
182	An expanding list of reliable paleomagnetic poles for Precambrian tectonic reconstructions. , 2021, , 605-639.		21
183	Indian-derived sediments deposited in Australia during Gondwana assembly. Precambrian Research, 2018, 312, 23-37.	1.2	20
184	Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: P-T path, U-Pb ages and tectonic implications. Precambrian Research, 2019, 326, 385-398.	1.2	20
185	Provenance Evolution of Ageâ€Calibrated Strata Reveals When and How South China Block Collided With Gondwana. Geophysical Research Letters, 2020, 47, e2020GL090282.	1.5	19
186	Pre-Alpine contrasting tectono-metamorphic evolutions within the Southern Steep Belt, Central Alps. Lithos, 2018, 310-311, 31-49.	0.6	18
187	Revisiting Mesozoic felsic intrusions in eastern South China: spatial and temporal variations and tectonic significance. Lithos, 2017, 294-295, 147-163.	0.6	17
188	1.39†Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna to Rodinia transition in the West Australian Craton. Precambrian Research, 2018, 316, 291-304.	1.2	17
189	The largest plagiogranite on Earth formed by re-melting of juvenile proto-continental crust. Communications Earth & Environment, 2021, 2, .	2.6	17
190	Paleomagnetic and rock magnetic investigations of the Changxing Permianâ€Triassic section, Zhejiang Province, China. Geophysical Research Letters, 1993, 20, 1667-1670.	1.5	16
191	Self demagnetisation corrections in magnetic modelling: some examples. Exploration Geophysics, 1998, 29, 396-401.	0.5	16
192	How not to build a supercontinent: A reply to J.D.A. Piper. Precambrian Research, 2009, 174, 208-214.	1.2	16
193	Paleo- to Mesoproterozoic magmatic and tectonic evolution of the southwestern Yangtze Block, south China: New constraints from ca. 1.7–1.5ÂGa mafic rocks in the Huili-Dongchuan area. Gondwana Research, 2020, 87, 248-262.	3.0	16
194	Early differentiation of the bulk silicate Earth as recorded by the oldest mantle reservoir. Precambrian Research, 2013, 238, 52-60.	1.2	15
195	The 1.24–1.21ÂGa Licheng Large Igneous Province in the North China Craton: Implications for Paleogeographic Reconstruction. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019005.	1.4	15
196	Paleomagnetism of the Upper Devonian reef complexes, Canning Basin, Western Australia. Tectonics, 1995, 14, 154-167.	1.3	13
197	New Late Palaeozoic Palaeomagnetic Results from Cratonic Australia, and Revision of the Gondwanan Apparent Polar Wander Path. Exploration Geophysics, 1993, 24, 263-267.	0.5	12
198	A Gravity Study of the Longmenshan Fault Zone: New Insights Into the Nature and Evolution of the Fault Zone and Extrusion‣tyle Growth of the Tibetan Plateau Since 40ÂMa. Tectonics, 2019, 38, 176-189.	1.3	12

#	Article	IF	CITATIONS
199	Recalibrating Rodinian rifting in the northwestern United States. Geology, 2021, 49, 617-622.	2.0	12
200	Understanding dual geochemical characters in a geological context for the Gaojiacun intrusion: Response to Munteanu and Yao's discussion [Precambrian Res. 154 (2007) 164–167]. Precambrian Research, 2007, 155, 328-332.	1.2	11
201	Mutual complement between statistical and neural network approaches for rock magnetism data analysis. Expert Systems With Applications, 2009, 36, 9678-9682.	4.4	11
202	In situ U-Pb geochronology and geochemistry of a 1.13â€~Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny. Precambrian Research, 2018, 310, 76-92.	1.2	11
203	Do Supercontinent-Superplume Cycles Control the Growth and Evolution of Continental Crust?. Journal of Earth Science (Wuhan, China), 2020, 31, 1142-1169.	1.1	11
204	Structural Evolution of a 1.6ÂGa Orogeny Related to the Final Assembly of the Supercontinent Nuna: Coupling of Episodic and Progressive Deformation. Tectonics, 2020, 39, e2020TC006162.	1.3	11
205	New Crustal Vs Model Along an Array in Southâ€East China: Seismic Characters and Paleoâ€Tethys Continental Amalgamation. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009024.	1.0	11
206	Quantified spatial relationships between gold mineralisation and key ore genesis controlling factors, and predictive mineralisation mapping, St Ives Goldfield, Western Australia. Ore Geology Reviews, 2013, 54, 157-166.	1.1	10
207	Decoding earth's plate tectonic history using sparse geochemical data. Geoscience Frontiers, 2020, 11, 265-276.	4.3	10
208	Two-stage crustal growth in the Arabian-Nubian shield: Initial arc accretion followed by plume-induced crustal reworking. Precambrian Research, 2021, 359, 106211.	1.2	10
209	Pitfalls in using the geochronological information from the EarthChem Portal for Precambrian time-series analysis. Precambrian Research, 2022, 369, 106514.	1.2	10
210	Spatio–temporal evolution of Mesoproterozoic magmatism in NE Australia: A hybrid tectonic model for final Nuna assembly. Precambrian Research, 2022, 372, 106602.	1.2	10
211	Magnetic petrophysical results from the Hamersley Basin and their implications for interpretation of magnetic surveys. Australian Journal of Earth Sciences, 2011, 58, 317-333.	0.4	9
212	EARLY CRETACEOUS APTIAN CHARCOAL FROM XINCHANG PETRIFIED WOOD NATIONAL GEOPARK OF ZHEJIANG PROVINCE, EASTERN SOUTH CHINA. Palaios, 2014, 29, 325-337.	0.6	9
213	Climatic and tectonic controls on Late Triassic to Middle Jurassic sedimentation in northeastern Guangdong Province, South China. Tectonophysics, 2016, 677-678, 68-87.	0.9	9
214	First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications. Scientific Reports, 2018, 8, 16403.	1.6	9
215	First evidence of Archean mafic dykes at 2.62†Ga in the Yilgarn Craton, Western Australia: Links to cratonisation and the Zimbabwe Craton. Precambrian Research, 2018, 317, 1-13.	1.2	9
216	Hit or miss: Glacial incisions of snowball Earth. Terra Nova, 2019, 31, 381-389.	0.9	9

#	Article	IF	CITATIONS
217	Synâ€deformational and drillingâ€induced remanent magnetizations from diamond drill cores of the Mt Eclipse Sandstone, Central Australia. Australian Journal of Earth Sciences, 1991, 38, 473-484.	0.4	8
218	South China in Rodinia — An Update. Gondwana Research, 2001, 4, 685-686.	3.0	8
219	Assembly and Break-up of Rodinia and Gondwana: Evidence from Eurasia and Gondwana: Introduction. Gondwana Research, 2003, 6, 139-142.	3.0	8
220	Origin of arc magmatic signature: A temperature-dependent process for trace element (re)-mobilization in subduction zones. Scientific Reports, 2019, 9, 7098.	1.6	8
221	Heterogeneous Exhumation of the Mount Isa Orogen in NE Australia After 1.6ÂGa Nuna Assembly: New Highâ€Precision ⁴⁰ Ar/ ³⁹ Ar Thermochronological Constraints. Tectonics, 2020, 39, e2020TC006129.	1.3	8
222	Middle Cambrian granites in the Dunhuang Block (NW China) mark the early subduction of the southernmost Paleo-Asian Ocean. Lithos, 2020, 372-373, 105654.	0.6	8
223	Syn-collisional magmatic record of Indian steep subduction by 50 Ma. Bulletin of the Geological Society of America, 2021, 133, 949-962.	1.6	8
224	A tectonic model for the Transcontinental Arch: Progressive migration of a Laurentian drainage divide during the Neoproterozoic–Cambrian Sauk Transgression. Terra Nova, 2021, 33, 430-440.	0.9	8
225	Decoupling between Oxygen and Radiogenic Isotopes: Evidence for Generation of Juvenile Continental Crust by Partial Melting of Subducted Oceanic Crust. Journal of Earth Science (Wuhan, China), 2021, 32, 1212-1225.	1.1	8
226	Detrital zircon U–Pb and Hf signatures of Paleo-Mesoproterozoic strata in the Priest River region, northwestern USA: A record of Laurentia assembly and Nuna tenure. Precambrian Research, 2021, 367, 106445.	1.2	8
227	A trans-lapetus transform fault control for the evolution of the Rheic Ocean: Implications for an early Paleozoic transition of accretionary tectonics. Bulletin of the Geological Society of America, 2022, 134, 2790-2808.	1.6	8
228	Trial by fire: Testing the paleolongitude of Pangea of competing reference frames with the African LLSVP. Geoscience Frontiers, 2020, 11, 1253-1256.	4.3	7
229	Reassessing zircon-monazite thermometry with thermodynamic modelling: insights from the Georgetown igneous complex, NE Australia. Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	7
230	Oceanic and super-deep continental diamonds share a transition zone origin and mantle plume transportation. Scientific Reports, 2021, 11, 16958.	1.6	7
231	Closing the "North American Magmatic―Gap: Crustal evolution of the Clearwater Block from multi-isotope and trace element zircon data. Precambrian Research, 2022, 369, 106533.	1.2	7
232	Formation of juvenile continental crust in northern Nubian Shield: New evidence from granitic zircon U-Pb-Hf-O isotopes. Precambrian Research, 2022, 379, 106791.	1.2	7
233	Multimodal investigation of thermally induced changes in magnetic fabric and magnetic mineralogy. Geophysical Journal International, 1998, 135, 988-998.	1.0	6
234	Age and chemical composition of Archean metapelites in the Zhongxiang Complex and implications for early crustal evolution of the Yangtze Craton. Lithos, 2018, 320-321, 280-301.	0.6	6

#	Article	IF	CITATIONS
235	New Paleointensity Data Suggest Possible Phanerozoicâ€Type Paleomagnetic Variations in the Precambrian. Geochemistry, Geophysics, Geosystems, 2021, 22, .	1.0	6
236	Approximating nonlinear relations between susceptibility and magnetic contents in rocks using neural networks. Tsinghua Science and Technology, 2010, 15, 281-287.	4.1	5
237	Magnetic fabric in mid-Cambrian rocks of the Central Flinders Zone and implications for the regional tectonic history. Tectonophysics, 1993, 223, 165-176.	0.9	4
238	830-820 Ma Mafic to Felsic Igneous Activity in South China and the Breakup of Rodinia. Gondwana Research, 1999, 2, 591.	3.0	4
239	Nanhua Rift: A Story of Continental Rift Related to Rodinia Break-up. Gondwana Research, 1999, 2, 614-615.	3.0	4
240	The South China piece in the Rodinian puzzle: A reply to the comment by Munteanu and Wilson. Precambrian Research, 2009, 171, 77-79.	1.2	4
241	Paleogeographic record of Eocene Farallon slab rollback beneath western North America: COMMENT. Geology, 2015, 43, e362-e362.	2.0	4
242	Palaeomagnetic Tests of Tectonic Models of the Tasman Fold Belt during the Neoproterozoic and Palaeozoic. Exploration Geophysics, 1993, 24, 243-246.	0.5	3
243	Reply to the comment of Clarke and Pillans on "Onset of aridity in Southern Western Australia—a preliminary palaeomagnetic appraisal―[Clobal and Planetary Change 18 (1998) 175–187]. Global and Planetary Change, 2002, 32, 283-286.	1.6	3
244	Early Ediacaran Magmatism in the Yenisei Ridge and Evolution of the Southwestern Margin of the Siberian Craton. Minerals (Basel, Switzerland), 2020, 10, 565.	0.8	3
245	Tectonostratigraphy and provenance analysis to define the edge and evolution of the eastern Wuyi-Yunkai orogen, South China. Geological Magazine, 2019, 156, 83-98.	0.9	3
246	Palaeomagnetic Dating of Mineral Deposits: A Brief Review and a Western Australian Perspective. Exploration Geophysics, 1992, 23, 373-379.	0.5	1
247	Oroclinal bending and block rotations in South China since the Mesozoic. Science Bulletin, 1997, 42, 132-136.	1.7	1
248	Reply to the comment: Mantle plume-, but not arc-related Neoproterozoic magmatism in South China. Precambrian Research, 2004, 132, 405-405.	1.2	0
249	Formation of high Â18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China: REPLY. Geology, 2012, 40, e278-e278.	2.0	0
250	The Long-Wavelength Mantle Structure, and the supercontinent Evolution since the Paleozoic. Acta Geologica Sinica, 2016, 90, 49-49.	0.8	0
251	Dike Magmatism in the Evolution of the Transform Active Continental Margin of the Siberian Craton in the Ediacaran. Doklady Earth Sciences, 2019, 489, 1285-1288.	0.2	0