Zhaowei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9264528/publications.pdf

Version: 2024-02-01

687363 677142 22 617 13 22 h-index citations g-index papers 23 23 23 1132 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Developing Strategy to Predict the Results of Prostate Multiparametric Magnetic Resonance Imaging and Reduce Unnecessary Multiparametric Magnetic Resonance Imaging Scan. Frontiers in Oncology, 2021, 11, 732027.	2.8	3
2	Pelvic Lymph Node Dissection During Cystectomy for Patients With Bladder Carcinoma With Variant Histology: Does Histologic Type Matter?. Frontiers in Oncology, 2020, 10, 545921.	2.8	6
3	Adding radiotherapy to androgen deprivation therapy in men with node-positive prostate cancer after radical prostatectomy. Medicine (United States), 2020, 99, e19153.	1.0	3
4	Identification of Immune-Related IncRNA Signature to Predict Prognosis and Immunotherapeutic Efficiency in Bladder Cancer. Frontiers in Oncology, 2020, 10, 542140.	2.8	21
5	Comprehensive circular RNA profiling reveals the regulatory role of circ_100242/miR-145 pathway in bladder cancer. Oncology Letters, 2020, 19, 2971-2978.	1.8	4
6	Prognostic value of preoperative hydronephrosis in patients with bladder cancer undergoing radical cystectomy: A meta-analysis. PLoS ONE, 2019, 14, e0222223.	2.5	13
7	Preoperative predictors of early death risk in bladder cancer patients treated with robotâ€assisted radical cystectomy. Cancer Medicine, 2019, 8, 3447-3452.	2.8	14
8	Replantation of Cryopreserved Fingers: An "Organ Banking―Breakthrough. Plastic and Reconstructive Surgery, 2019, 144, 679-683.	1.4	16
9	Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment. Drug Design, Development and Therapy, 2016, 10, 1035.	4.3	25
10	Robotâ€essisted laparoscopic resection of large retroperitoneal paraganglioma – initial experience from China. International Journal of Medical Robotics and Computer Assisted Surgery, 2016, 12, 686-693.	2.3	10
11	MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin $\hat{l}\pm 5$. Oncotarget, 2016, 7, 27445-27457.	1.8	44
12	Robotic versus Open Radical Cystectomy: An Updated Systematic Review and Meta-Analysis. PLoS ONE, 2015, 10, e0121032.	2.5	64
13	Current status of diagnosis and treatment of bladder cancer in China – Analyses of Chinese Bladder Cancer Consortium database. Asian Journal of Urology, 2015, 2, 63-69.	1.2	52
14	The Dual mTORC1 and mTORC2 Inhibitor PP242 Shows Strong Antitumor Activity in a Pheochromocytoma PC12 Cell Tumor Model. Urology, 2015, 85, 273.e1-273.e7.	1.0	10
15	MicroRNAâ€145 directly targets the insulinâ€like growth factor receptor I in human bladder cancer cells. FEBS Letters, 2014, 588, 3180-3185.	2.8	41
16	Risk of bladder cancer in patients with diabetes mellitus: an updated meta-analysis of 36 observational studies. BMC Cancer, 2013, 13, 310.	2.6	72
17	Diabetes Mellitus and Risk of Bladder Cancer: A Meta-Analysis of Cohort Studies. PLoS ONE, 2013, 8, e56662.	2.5	41
18	Inflammatory Pathways as Promising Targets to Increase Chemotherapy Response in Bladder Cancer. Mediators of Inflammation, 2012, 2012, 1-11.	3.0	53

#	Article	IF	CITATION
19	Targeted Therapy for Advanced Urothelial Cancer of the Bladder: Where Do We Stand?. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1081-1087.	1.7	9
20	Thulium Laser Vaporesection Versus Transurethral Electrovaporization of the Prostate in High-Risk Patients with Benign Prostatic Hyperplasia. Photomedicine and Laser Surgery, 2012, 30, 714-718.	2.0	12
21	Increased risk of bladder cancer with pioglitazone therapy in patients with diabetes: A meta-analysis. Diabetes Research and Clinical Practice, 2012, 98, 159-163.	2.8	60
22	Targeting the inflammatory pathways to enhance chemotherapy of cancer. Cancer Biology and Therapy, 2011, 12, 95-105.	3.4	44