Can Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9264321/publications.pdf

Version: 2024-02-01

567281 713466 21 716 15 21 citations h-index g-index papers 29 29 29 805 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	A critical review of sulfate aerosol formation mechanisms during winter polluted periods. Journal of Environmental Sciences, 2023, 123, 387-399.	6.1	20
2	Atmospheric measurements at Mt. Tai – Part II: HONO budget and radical (RO& t;sub>& t;i>x>\$€‰+ NO& t;sub> + NO& t;suchemistry in the lower boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 1035-1057.	ıb& am p;gt	;3
3	Atmospheric measurements at Mt. Tai $\hat{a} \in$ Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 3149-3167.	4.9	12
4	Strong impacts of biomass burning, nitrogen fertilization, and fine particles on gas-phase hydrogen peroxide (H2O2). Science of the Total Environment, 2022, 843, 156997.	8.0	2
5	Evidence for Strong HONO Emission from Fertilized Agricultural Fields and its Remarkable Impact on Regional O ₃ Pollution in the Summer North China Plain. ACS Earth and Space Chemistry, 2021, 5, 340-347.	2.7	32
6	Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of H ₂ O ₂ and Particulate Sulfate in the Winter North China Plain. Environmental Science & Echnology, 2021, 55, 7818-7830.	10.0	24
7	Atmospheric Hydrogen Peroxide (H 2 O 2) at the Foot and Summit of Mt. Tai: Variations, Sources and Sinks, and Implications for Ozone Formation Chemistry. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033975.	3.3	7
8	A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxidations in both summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 13713-13727.	4.9	11
9	Photochemical Aging of Atmospheric Fine Particles as a Potential Source for Gas-Phase Hydrogen Peroxide. Environmental Science & Environmental Science	10.0	8
10	HONO Budget and Its Role in Nitrate Formation in the Rural North China Plain. Environmental Science & Eamp; Technology, 2020, 54, 11048-11057.	10.0	74
11	Pollution levels, composition characteristics and sources of atmospheric PM2.5 in a rural area of the North China Plain during winter. Journal of Environmental Sciences, 2020, 95, 172-182.	6.1	22
12	Effect of potential HONO sources on peroxyacetyl nitrate (PAN) formation in eastern China in winter. Journal of Environmental Sciences, 2020, 94, 81-87.	6.1	18
13	Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry. Atmospheric Chemistry and Physics, 2020, 20, 4153-4165.	4.9	104
14	Development of stripping coil-ion chromatograph method and intercomparison with CEAS and LOPAP to measure atmospheric HONO. Science of the Total Environment, 2019, 646, 187-195.	8.0	36
15	The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China. Journal of Environmental Sciences, 2019, 79, 121-134.	6.1	44
16	Development and application of a twin open-top chambers method to measure soil HONO emission in the North China Plain. Science of the Total Environment, 2019, 659, 621-631.	8.0	36
17	Activity maintenance of the excised branches and a case study of NO2 exchange between the atmosphere and P. nigra branches. Journal of Environmental Sciences, 2019, 80, 316-326.	6.1	1
18	High H ₂ O ₂ Concentrations Observed during Haze Periods during the Winter in Beijing: Importance of H ₂ O ₂ Oxidation in Sulfate Formation. Environmental Science and Technology Letters, 2018, 5, 757-763.	8.7	91

CAN YE

#	Article	IF	CITATION
19	The contribution of residential coal combustion to atmospheric PM _{2. 5} in northern China during winter. Atmospheric Chemistry and Physics, 2017, 17, 11503-11520.	4.9	65
20	An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion. Geophysical Research Letters, 2016, 43, 8720-8727.	4.0	35
21	The possible contribution of the periodic emissions from farmers' activities in the North China Plain to atmospheric water-soluble ions in Beijing. Atmospheric Chemistry and Physics, 2016, 16, 10097-10109.	4.9	47