List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263940/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tomographic PIV investigation of vortex shedding topology for a cantilevered circular cylinder. Journal of Fluid Mechanics, 2022, 931, .	3.4	11
2	Effect of area ratio and heat release method on the Maâ^žâ€¯= 2-6 operation performance of rocket-based combined cycle engine. Aerospace Science and Technology, 2022, 126, 107617.	4.8	4
3	Towards robust data-driven reduced-order modelling for turbulent flows: application to vortex-induced vibrations. Theoretical and Computational Fluid Dynamics, 2022, 36, 517-543.	2.2	6
4	Ejector mode performance improvement of rocket-based combined cycle engine designed for dual-ramjet mode. Aerospace Science and Technology, 2022, 126, 107637.	4.8	3
5	Investigation of the influence of low-frequency forcing on the 3-D turbulent wake of a cantilevered triangular prism. Journal of Fluid Mechanics, 2021, 913, .	3.4	3
6	An Exploratory Analysis of Wind Patterns of Alberta, Canada. Environmental Modeling and Assessment, 2021, 26, 737-761.	2.2	2
7	Topological Differences in Mean Wakes of Circular and Square Cantilevered Cylinders. Springer Proceedings in Physics, 2021, , 203-208.	0.2	0
8	Unsteady actuation and feedback control of the experimental fluidic pinball using genetic programming. Experiments in Fluids, 2021, 62, 1.	2.4	2
9	Visualizing three-dimensional vortex shedding through evolution surface clusters. Journal of Visualization, 2020, 23, 17-34.	1.8	5
10	Machine learning strategies applied to the control of a fluidic pinball. Physics of Fluids, 2020, 32, .	4.0	41
11	Lagrangian interpolation algorithm for PIV data. International Journal of Heat and Fluid Flow, 2020, 86, 108733.	2.4	1
12	End effects of nominally two-dimensional thin flat plates. International Journal of Heat and Fluid Flow, 2020, 86, 108719.	2.4	3
13	Evolution Surfaces for Spatiotemporal Visualization of Vortex Features. Canadian Journal of Electrical and Computer Engineering, 2020, 43, 30-42.	2.0	4
14	Wake dynamics and surface pressure variations on two-dimensional normal flat plates. AIP Advances, 2019, 9, 045209.	1.3	9
15	Vortex Merging in the Wake of a Surface-Mounted Low Aspect Ratio Cone. Springer Proceedings in Physics, 2019, , 229-234.	0.2	0
16	On simulating the flow past a normal thin flat plate. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174, 170-187.	3.9	24
17	Shedding of dual structures in the wake of a surface-mounted low aspect ratio cone. Physics of Fluids, 2018, 30, 045107.	4.0	8
18	Suppression of fluctuating lift on a cylinder via evolutionary algorithms: Control with interfering small cylinder. Physics of Fluids, 2018, 30, 127104.	4.0	16

#	Article	IF	CITATIONS
19	Low-frequency dynamics in the turbulent wake of cantilevered square and circular cylinders protruding a thin laminar boundary layer. Experiments in Fluids, 2018, 59, 1.	2.4	25
20	Influence of control cylinder placement on vortex shedding from a circular cylinder. Experiments in Fluids, 2018, 59, 1.	2.4	8
21	Dynamics of the recirculating areas of a forward-facing step. Experiments in Fluids, 2018, 59, 1.	2.4	33
22	Proper orthogonal decomposition analysis of a circular cylinder undergoing vortex-induced vibrations. Physics of Fluids, 2018, 30, .	4.0	76
23	Wake dynamics of a cantilevered circular cylinder of aspect ratio 4. International Journal of Heat and Fluid Flow, 2018, 72, 109-122.	2.4	10
24	Enhanced Delignification of Wheat Straw by the Combined Effect of Hydrothermal and Fungal Treatments. Chemical Engineering Communications, 2017, 204, 803-812.	2.6	7
25	Orthotropic hydraulic permeability of arrays of parallel cylinders. Physical Review E, 2017, 96, 033112.	2.1	6
26	The turbulence structure of the wake of a thin flat plate at post-stall angles of attack. Experiments in Fluids, 2017, 58, 1.	2.4	11
27	Towards a virtual environment for interactive analysis of cluster-based flow pattern abstraction. , 2017, , .		Ο
28	Open and closed-loop control of a triangular bluff body using rotating cylinders. IFAC-PapersOnLine, 2017, 50, 12291-12295.	0.9	3
29	Clustering-based threshold estimation for vortex extraction and visualization. , 2017, , .		1
30	Visualizing vortex clusters in the wake of a high-speed train. , 2017, , .		4
31	Effect of thickness-to-chord ratio on the wake of two-dimensional rectangular cylinders. Physical Review Fluids, 2017, 2, .	2.5	6
32	Effect of side-edge vortices and secondary induced flow on the wake of normal thin flat plates. International Journal of Heat and Fluid Flow, 2016, 61, 197-212.	2.4	13
33	Modal energy flow analysis of a highly modulated wake behind a wall-mounted pyramid. Journal of Fluid Mechanics, 2016, 798, 717-750.	3.4	19
34	Pre-processing unsteady flows for clutter reduction in vortex visualization. , 2016, , .		0
35	Characteristics of distinct flow regimes in the wake of an infinite span normal thin flat plate. International Journal of Heat and Fluid Flow, 2016, 62, 423-436.	2.4	33
36	Investigation of the Performance of Turbulence Models With Respect to High Flow Curvature in Centrifugal Compressors. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	1.5	13

#	Article	IF	CITATIONS
37	Wake Dynamics Behind a Normal Thin Flat Plate at Moderate Reynolds Numbers. Springer Proceedings in Physics, 2016, , 265-269.	0.2	2
38	Boundary layer effect on the vortex shedding of wall-mounted rectangular cylinder. Experiments in Fluids, 2015, 56, 1.	2.4	51
39	Sensor-based estimation of the velocity in the wake of a low-aspect-ratio pyramid. Experiments in Fluids, 2015, 56, 1.	2.4	38
40	Induction and suppression of <i>Dichomitus squalens</i> and <i>Ceriporiopsis subvermispora</i> peroxidase activity by manganese sulphate in response to carbon and nitrogen sources. Canadian Journal of Chemical Engineering, 2014, 92, 779-786.	1.7	5
41	Large-scale structures in dipole and quadrupole wakes of a wall-mounted finite rectangular cylinder. Experiments in Fluids, 2013, 54, 1.	2.4	86
42	Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. Journal of Fluid Mechanics, 2013, 736, 316-350.	3.4	68
43	Experimental investigation of the wall shear stress in a circular impinging jet. Physics of Fluids, 2013, 25, .	4.0	31
44	Growth and separation of a start-up vortex from a two-dimensional shear layer. Physics of Fluids, 2012, 24, .	4.0	41
45	Influence of obstacle aspect ratio on tripped cylinder wakes. International Journal of Heat and Fluid Flow, 2012, 35, 109-118.	2.4	7
46	On the vortex dynamics in the wake of a finite surface-mounted square cylinder. Experiments in Fluids, 2012, 52, 1149-1167.	2.4	70
47	Analysis of Fluid Flow and Wall Shear Stress Patterns Inside Partially Filled Agitated Culture Well Plates. Annals of Biomedical Engineering, 2012, 40, 707-728.	2.5	94
48	Alternating half-loop shedding in the turbulent wake of a finite surface-mounted square cylinder with a thin boundary layer. Physics of Fluids, 2011, 23, .	4.0	114
49	Evaluation of the Thermofluid Performance of an Automotive Engine Cooling-Fan System Motor. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225, 74-89.	1.9	5
50	Quasi-Periodic Structure of Vortical Flows Produced in the Wake of Finite Bluff Bodies Partially Immersed in a Boundary Layer. , 2010, , .		3
51	What do biofilms sense in agitated well plates? A combined CFD and experimental study on spatial and temporal wall shear stress distribution. , 2010, , .		1
52	Development of a new highâ€efficiency simple structure cyclone. Canadian Journal of Chemical Engineering, 2009, 87, 343-349.	1.7	3
53	The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility ofPseudomonas aeruginosa01 biofilms. Biofouling, 2009, 25, 711-725.	2.2	31
54	Vortical structures around a surface-mounted pyramid in a thin boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96, 769-778.	3.9	14

#	Article	IF	CITATIONS
55	Investigation of bluff body asymmetry on the properties of vortex shedding. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96, 1152-1163.	3.9	12
56	Dual vortex structure shedding from low aspect ratio, surface-mounted pyramids. Journal of Turbulence, 2008, 9, N28.	1.4	11
57	Comparison of Far-Field Turbulent Structure of a Rectangular Surface Jet to Three-Dimensional Free and Wall Jets. Journal of Engineering Mechanics - ASCE, 2008, 134, 224-233.	2.9	3
58	Mean Flow Field of a Nonbuoyant Rectangular Surface Jet. Journal of Hydraulic Engineering, 2007, 133, 234-239.	1.5	13
59	A two-step procedure for automatic and accurate segmentation of volumetric CLSM biofilm images. Journal of Microbiological Methods, 2007, 70, 424-433.	1.6	29
60	Increased tolerance of <i>Staphylococcus aureus</i> to vancomycin in viscous media. FEMS Immunology and Medical Microbiology, 2007, 51, 277-288.	2.7	41
61	Structure ofProteus mirabilisbiofilms grown in artificial urine and standard laboratory media. FEMS Microbiology Letters, 2007, 268, 16-21.	1.8	52
62	Vortex shedding from two surface-mounted cubes in tandem. International Journal of Heat and Fluid Flow, 2004, 25, 364-372.	2.4	55
63	Study of the flow around surface-mounted pyramids. Experiments in Fluids, 2003, 34, 379-389.	2.4	33
64	Influence of wall proximity on vortex shedding from a square cylinder. Experiments in Fluids, 2003, 34, 585-596.	2.4	78
65	The effects of wall proximity on vortex shedding from a square cylinder: Three-dimensional effects. Physics of Fluids, 2002, 14, 4160-4177.	4.0	55
66	Vortex shedding from a square cylinder near a wall. Journal of Turbulence, 2002, 3, N3.	1.4	18
67	On the validity of the perturbation approach for the flow inside weakly modulated channels. International Journal for Numerical Methods in Fluids, 2002, 39, 1139-1159.	1.6	21
68	Turbulent Flow Around Two Interfering Surface-Mounted Cubic Obstacles in Tandem Arrangement. Journal of Fluids Engineering, Transactions of the ASME, 2000, 122, 24-31.	1.5	64
69	The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow (Data Bank Contribution). Journal of Fluids Engineering, Transactions of the ASME, 1993, 115, 85-92.	1.5	437