MaÅ,gorzata Dukat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263878/publications.pdf

Version: 2024-02-01

567281 526287 42 779 15 27 h-index g-index citations papers 42 42 42 832 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Medicinal chemistry: The key to critical thinking in pharmacotherapy. Currents in Pharmacy Teaching and Learning, 2022, 14, 253-257.	1.0	O
2	Evaluation of galantamine and deconstructed analogs as $\hat{l}\pm7$ nAChR and AChE ligands. Results in Chemistry, 2022, 4, 100286.	2.0	5
3	Review of 3D templates for in silico homology models of MATs: improved 3D model of hDAT. Medicinal Chemistry Research, 2022, 31, 643-651.	2.4	3
4	Psychedelic-like Properties of Quipazine and Its Structural Analogues in Mice. ACS Chemical Neuroscience, 2021, 12, 831-844.	3.5	14
5	N ₁ H- and N ₁ -Substituted Phenylguanidines as α7 Nicotinic Acetylcholine (nACh) Receptor Antagonists: Structure–Activity Relationship Studies. ACS Chemical Neuroscience, 2021, 12, 2194-2201.	3.5	2
6	Computational analysis of non-competitive antagonist arylguanidine- $\hat{l}\pm7$ nAChR complexes. Journal of Molecular Graphics and Modelling, 2021, 107, 107943.	2.4	1
7	Non-conserved residues dictate dopamine transporter selectivity for the potent synthetic cathinone and psychostimulant MDPV. Neuropharmacology, 2021, 200, 108820.	4.1	6
8	X-ray crystal structure of a 2-amino-3,4-dihydroquinazoline 5-HT3 serotonin receptor antagonist and related analogs. Journal of Molecular Structure, 2020, 1202, 127276.	3.6	0
9	Multi-modal antidepressant-like action of 6- and 7-chloro-2-aminodihydroquinazolines in the mouse tail suspension test. Psychopharmacology, 2019, 236, 2093-2104.	3.1	11
10	Revised Pharmacophore Model for 5-HT _{2A} Receptor Antagonists Derived from the Atypical Antipsychotic Agent Risperidone. ACS Chemical Neuroscience, 2019, 10, 2318-2331.	3.5	10
11	"Methylene Bridge―to 5-HT ₃ Receptor Antagonists: Conformationally Constrained Phenylguanidines. ACS Chemical Neuroscience, 2019, 10, 1380-1389.	3.5	3
12	<i>des</i> -Formylflustrabromine (dFBr): A Structure–Activity Study on Its Ability To Potentiate the Action of Acetylcholine at α4β2 Nicotinic Acetylcholine Receptors. ACS Chemical Neuroscience, 2018, 9, 2984-2996.	3.5	7
13	Reevaluation of fenpropimorph as a $\ddot{l}f$ receptor ligand: Structure-affinity relationship studies at human $\ddot{l}f1$ receptors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2912-2919.	2.2	9
14	A new chemotype inhibitor for the human organic cation transporter 3 (hOCT3). Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4440-4445.	2.2	6
15	Synthetic Cathinones: A Brief Overview of Overviews with Applications to the Forensic Sciences. Annals of Forensic Research and Analysis, 2017, 4, .	0.0	1
16	Reformulating a Pharmacophore for 5-HT _{2A} Serotonin Receptor Antagonists. ACS Chemical Neuroscience, 2016, 7, 1292-1299.	3.5	8
17	Superagonist, Full Agonist, Partial Agonist, and Antagonist Actions of Arylguanidines at 5-Hydroxytryptamine-3 (5-HT ₃) Subunit A Receptors. ACS Chemical Neuroscience, 2016, 7, 1565-1574.	3.5	10
18	Structure-Activity Relationships of Synthetic Cathinones. Current Topics in Behavioral Neurosciences, 2016, 32, 19-47.	1.7	44

#	Article	IF	CITATIONS
19	2-Amino-6-chloro-3,4-dihydroquinazoline: A novel 5-HT3 receptor antagonist with antidepressant character. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5945-5948.	2.2	36
20	MD-354 selectively antagonizes the antinociceptive effects of (\hat{a}^{*}) nicotine in the mouse tail-flick assay. Psychopharmacology, 2010, 210, 547-557.	3.1	4
21	Antinociceptive Synergism of MDâ€354 and Clonidine. Part II. The α ₂ â€Adrenoceptor Component. Basic and Clinical Pharmacology and Toxicology, 2010, 107, 690-697.	2.5	4
22	Binding of Serotonin and N1-Benzenesulfonyltryptamine-Related Analogs at Human 5-HT6 Serotonin Receptors: Receptor Modeling Studies. Journal of Medicinal Chemistry, 2008, 51, 603-611.	6.4	36
23	MD-354: What is It Good For?. CNS Neuroscience & Therapeutics, 2007, 13, 1-20.	4.0	9
24	The 5-HT3 receptor partial agonist MD-354 (meta-chlorophenylguanidine) enhances the discriminative stimulus actions of (+)amphetamine in rats. Pharmacology Biochemistry and Behavior, 2007, 87, 203-207.	2.9	7
25	3-(2-Aminoethyl)pyridine analogs as $\hat{l}\pm4\hat{l}^22$ nicotinic cholinergic receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4308-4312.	2.2	7
26	5-ZATRYPTAMINE ANALOGS AS h5-HT6 SEROTONIN RECEPTOR LIGANDS. Medicinal Chemistry Research, 2005, 14, 1-18.	2.4	7
27	5-HT3 Serotonin Receptor Agonists: A Pharmacophoric Journey. Current Medicinal Chemistry - Central Nervous System Agents, 2004, 4, 77-94.	0.5	7
28	Effect of 5-HT3 Receptor Over-Expression on the Discriminative Stimulus Effects of Ethanol. Alcoholism: Clinical and Experimental Research, 2004, 28, 1161-1171.	2.4	23
29	MD-354 potentiates the antinociceptive effect of clonidine in the mouse tail-flick but not hot-plate assay. European Journal of Pharmacology, 2004, 495, 129-136.	3.5	13
30	Binding of tryptamine analogs at h5-HT1E receptors: a structure–affinity investigation. Bioorganic and Medicinal Chemistry, 2004, 12, 2545-2552.	3.0	23
31	$(\hat{A}\pm)$ 8-Amino-5,6,7,8-tetrahydroisoquinolines as novel antinociceptive agents. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3651-3654.	2.2	7
32	Epibatidine: impact on nicotinic receptor research. Cellular and Molecular Neurobiology, 2003, 23, 365-378.	3.3	22
33	Conformationally-Restricted analogues and partition coefficients of the 5-HT3 serotonin receptor ligands meta-Chlorophenylbiguanide (mCPBG) and meta-Chlorophenylguanidine (mCPG). Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1119-1123.	2.2	22
34	Arylguanidine and arylbiguanide binding at 5-HT3 serotonin receptors: A QSAR study. Bioorganic and Medicinal Chemistry, 2003, 11, 4449-4454.	3.0	42
35	Functional diversity among 5-substituted nicotine analogs; in vitro and in vivo investigations. European Journal of Pharmacology, 2002, 435, 171-180.	3.5	15
36	Effect of PMA optical isomers and 4-MTA in PMMA-trained rats. Pharmacology Biochemistry and Behavior, 2002, 72, 299-305.	2.9	15

#	Article	IF	CITATION
37	The binding of arylguanidines at 5-HT3 serotonin receptors: a structure–affinity investigation. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1599-1603.	2.2	21
38	The 5-HT 3 agent N -(3-chlorophenyl)guanidine (MD-354) serves as a discriminative stimulus in rats and displays partial agonist character in a shrew emesis assay. Psychopharmacology, 2000, 150, 200-207.	3.1	28
39	2-Substituted Tryptamines:  Agents with Selectivity for 5-HT ₆ Serotonin Receptors. Journal of Medicinal Chemistry, 2000, 43, 1011-1018.	6.4	149
40	Lobeline:Â Structureâ^'Affinity Investigation of Nicotinic Acetylcholinergic Receptor Binding. Journal of Medicinal Chemistry, 1999, 42, 3726-3731.	6.4	57
41	Structureâ^'Activity Relationships for the Binding of Arylpiperazines and Arylbiguanides at 5-HT3Serotonin Receptors. Journal of Medicinal Chemistry, 1996, 39, 4017-4026.	6.4	59
42	Pharmacology of novel nicotinic analogs. Drug Development Research, 1996, 38, 177-187.	2.9	26