Martin Helgesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926386/publications.pdf

Version: 2024-02-01

		279487	500791
29	2,761	23	28
papers	citations	h-index	g-index
31	31	31	3968
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	In-line, roll-to-roll morphology analysis of organic solar cell active layers. Energy and Environmental Science, 2017, 10, 2411-2419.	15.6	54
2	Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batchâ€toâ€Batch Variations for High‶hroughput Energy Conversion. Macromolecular Rapid Communications, 2017, 38, 1700526.	2.0	26
3	Slotâ€Dieâ€Coated V ₂ O ₅ as Hole Transport Layer for Flexible Organic Solar Cells and Optoelectronic Devices. Advanced Engineering Materials, 2016, 18, 1494-1503.	1.6	28
4	Improving the Operational Stability of PBDTTTzâ€4 Polymer Solar Cells Modules by Electrode Modification. Advanced Engineering Materials, 2016, 18, 511-517.	1.6	17
5	Mechanical Properties of a Library of Low-Band-Gap Polymers. Chemistry of Materials, 2016, 28, 2363-2373.	3.2	125
6	X-Ray Nanovision: Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging (Adv.) Tj ETQq0 0 (0 rgβT/Ο\	verlock 10 Tf 5
7	Rollâ€ŧoâ€Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solutionâ€Processed Tandem Polymer Solar Cells. Advanced Functional Materials, 2015, 25, 4539-4547.	7.8	97
8	Making Ends Meet: Flow Synthesis as the Answer to Reproducible Highâ€Performance Conjugated Polymers on the Scale that Rollâ€ŧoâ€Roll Processing Demands. Advanced Energy Materials, 2015, 5, 1401996.	10.2	55
9	Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells. Advanced Energy Materials, 2015, 5, 1402186.	10.2	51
10	Roundâ€Robin Studies on Rollâ€Processed ITOâ€free Organic Tandem Solar Cells Combined with Interâ€Laboratory Stability Studies. Energy Technology, 2015, 3, 423-427.	1.8	7
11	Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging. Advanced Energy Materials, 2015, 5, 1400736.	10.2	52
12	Allâ€Solutionâ€Processed, Ambient Method for ITOâ€Free, Rollâ€Coated Tandem Polymer Solar Cells using Solutionâ€Processed Metal Films. Energy Technology, 2014, 2, 651-659.	1.8	24
13	Generic roll-to-roll compatible method for insolubilizing and stabilizing conjugated active layers based on low energy electron irradiation. Journal of Applied Polymer Science, 2014, 131, n/a-n/a.	1.3	6
14	Upscaling from single cells to modules – fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime. Journal of Materials Chemistry C, 2014, 2, 1290-1297.	2.7	93
15	Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy and Environmental Science, 2014, 7, 2925.	15.6	255
16	A comparative study of fluorine substituents for enhanced stability of flexible and ITOâ€free highâ€performance polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 893-899.	2.4	35
17	Advanced Functional Polymers for Increasing the Stability of Organic Photovoltaics. Macromolecular Chemistry and Physics, 2013, 214, 1546-1558.	1.1	23
18	Slotâ€Die Coating of a High Performance Copolymer in a Readily Scalable Roll Process for Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 1664-1669.	10.2	69

#	Article	IF	CITATION
19	A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoating. Solar Energy Materials and Solar Cells, 2013, 108, 126-128.	3.0	93
20	Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications. Journal of Materials Chemistry, 2012, 22, 15710.	6.7	40
21	Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance. Journal of Materials Chemistry, 2012, 22, 7592.	6.7	79
22	Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cells. Polymer Chemistry, 2012, 3, 2649.	1.9	33
23	Thermally reactive Thiazolo [5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cells. Polymer Chemistry, 2011, 2, 2536.	1.9	35
24	Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods. ACS Nano, 2011, 5, 4188-4196.	7.3	217
25	Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb. Journal of Materials Chemistry, 2011, 21, 4132.	6.7	236
26	Photochemical stability and photovoltaic performance of low-band gap polymers based on dithiophene with different bridging atoms. Polymer Chemistry, 2011, 2, 1355.	1.9	16
27	Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode. Advanced Energy Materials, 2011, 1, 68-71.	10.2	221
28	Advanced materials and processes for polymer solar cell devices. Journal of Materials Chemistry, 2010, 20, 36-60.	6.7	746
29	Influence of the Annealing Temperature on the Photovoltaic Performance and Film Morphology Applying Novel Thermocleavable Materials. Chemistry of Materials, 2010, 22, 5617-5624.	3.2	28