
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From scenario-based seismic hazard to scenario-based landslide hazard: fast-forwarding to the future via statistical simulations. Stochastic Environmental Research and Risk Assessment, 2022, 36, 2229-2242.	1.9	13
2	Statistical spatiotemporal analysis of hydro-morphological processes in China during 1950–2015. Stochastic Environmental Research and Risk Assessment, 2022, 36, 2377-2397.	1.9	6
3	Doing more with less: A comparative assessment between morphometric indices and machine learning models for automated gully pattern extraction (A case study: Dashtiari region, Sistan and) Tj ETQq1 1 0.784314	rgBT /Ove	erlook 10 Tf 50
4	The world's second-largest, recorded landslide event: Lessons learnt from the landslides triggered during and after the 2018 Mw 7.5 Papua New Guinea earthquake. Engineering Geology, 2022, 297, 106504.	2.9	22
5	Surface temperature controls the pattern of post-earthquake landslide activity. Scientific Reports, 2022, 12, 988.	1.6	24
6	Could road constructions be more hazardous than an earthquake in terms of mass movement?. Natural Hazards, 2022, 112, 639-663.	1.6	27
7	Distinct Susceptibility Patterns of Active and Relict Landslides Reveal Distinct Triggers: A Case in Northwestern Turkey. Remote Sensing, 2022, 14, 1321.	1.8	4
8	Mapping Susceptibility With Open-Source Tools: A New Plugin for QGIS. Frontiers in Earth Science, 2022, 10, .	0.8	13
9	On the prediction of landslide occurrences and sizes via Hierarchical Neural Networks. Stochastic Environmental Research and Risk Assessment, 2022, 36, 2031-2048.	1.9	13
10	An open dataset for landslides triggered by the 2016 Mw 7.8 KaikÅura earthquake, New Zealand. Landslides, 2022, 19, 1405-1420.	2.7	16
11	Space-time susceptibility modeling of hydro-morphological processes at the Chinese national scale. Engineering Geology, 2022, 301, 106586.	2.9	19
12	A glimpse into the northernmost thermo-erosion gullies in Svalbard archipelago and their implications for Arctic cultural heritage. Catena, 2022, 212, 106105.	2.2	5
13	Will I or my loved one die? Concordant awareness between terminal cancer patients and their caregivers is associated with lower patient anxiety and caregiver burden. European Journal of Cancer Care, 2022, 31, .	0.7	4
14	Unified landslide hazard assessment using hurdle models: a case study in the Island of Dominica. Stochastic Environmental Research and Risk Assessment, 2022, 36, 2071-2084.	1.9	9
15	Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth-Science Reviews, 2022, 232, 104125.	4.0	33
16	Capturing the footprints of ground motion in the spatial distribution of rainfall-induced landslides. Bulletin of Engineering Geology and the Environment, 2021, 80, 4323-4345.	1.6	22
17	Physically-based catchment-scale prediction of slope failure volume and geometry. Engineering Geology, 2021, 284, 105942.	2.9	20
18	Preliminary assessment of thaw slump hazard to Arctic cultural heritage in Nordenskiöld Land, Svalbard. Landslides, 2021, 18, 2935-2947.	2.7	19

#	Article	IF	CITATIONS
19	Soil erosion modelling: A bibliometric analysis. Environmental Research, 2021, 197, 111087.	3.7	78
20	New Insight into Post-seismic Landslide Evolution Processes in the Tropics. Frontiers in Earth Science, 2021, 9, .	0.8	9
21	Spatiotemporal clustering of flash floods in a changing climate (China, 1950–2015). Natural Hazards and Earth System Sciences, 2021, 21, 2109-2124.	1.5	9
22	Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 2021, 780, 146494.	3.9	261
23	New pedotransfer approaches to predict soil bulk density using WoSIS soil data and environmental covariates in Mediterranean agro-ecosystems. Science of the Total Environment, 2021, 780, 146609.	3.9	29
24	A closer look at factors governing landslide recovery time in post-seismic periods. Geomorphology, 2021, 391, 107912.	1.1	12
25	Using satellite rainfall products to assess the triggering conditions for hydro-morphological processes in different geomorphological settings in China. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102350.	1.4	12
26	Landslide size matters: A new data-driven, spatial prototype. Engineering Geology, 2021, 293, 106288.	2.9	37
27	When Enough Is Really Enough? On the Minimum Number of Landslides to Build Reliable Susceptibility Models. Geosciences (Switzerland), 2021, 11, 469.	1.0	21
28	Completeness Index for Earthquake-Induced Landslide Inventories. Engineering Geology, 2020, 264, 105331.	2.9	33
29	Comparison of machine learning models for gully erosion susceptibility mapping. Geoscience Frontiers, 2020, 11, 1609-1620.	4.3	96
30	Dignity Therapy Helps Terminally III Patients Maintain a Sense of Peace: Early Results of a Randomized Controlled Trial. Frontiers in Psychology, 2020, 11, 1468.	1.1	26
31	Space-time landslide predictive modelling. Earth-Science Reviews, 2020, 209, 103318.	4.0	88
32	Spatial modeling of multi-hazard threat to cultural heritage sites. Engineering Geology, 2020, 277, 105776.	2.9	56
33	A methodological comparison of head-cut based gully erosion susceptibility models: Combined use of statistical and artificial intelligence. Geomorphology, 2020, 359, 107136.	1.1	32
34	Hybrid Computational Intelligence Models for Improvement Gully Erosion Assessment. Remote Sensing, 2020, 12, 140.	1.8	33
35	Chrono-validation of near-real-time landslide susceptibility models via plug-in statistical simulations. Engineering Geology, 2020, 278, 105818.	2.9	31
36	Accounting for covariate distributions in slope-unit-based landslide susceptibility models. A case study in the alpine environment. Engineering Geology, 2019, 260, 105237.	2.9	51

#	Article	IF	CITATIONS
37	Geostatistical Modeling to Capture Seismic‧haking Patterns From Earthquakeâ€Induced Landslides. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1958-1980.	1.0	52
38	Variation in landslide-affected area under the control of ground motion and topography. Engineering Geology, 2019, 260, 105229.	2.9	26
39	Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. Catena, 2019, 183, 104223.	2.2	76
40	PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Science of the Total Environment, 2019, 664, 296-311.	3.9	84
41	Numerical Recipes for Landslide Spatial Prediction Using R-INLA. , 2019, , 55-83.		9
42	GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of the Total Environment, 2019, 658, 160-177.	3.9	150
43	Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures. Environmental Modelling and Software, 2018, 105, 1-16.	1.9	78
44	Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2179-2198.	1.9	78
45	Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks. Geoderma, 2018, 318, 148-159.	2.3	42
46	Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degradation and Development, 2018, 29, 4035-4049.	1.8	98
47	Presenting logistic regression-based landslide susceptibility results. Engineering Geology, 2018, 244, 14-24.	2.9	164
48	Persistent complex bereavement disorder in caregivers of terminally ill patients undergoing supportive-expressive treatment: a pilot study. Journal of Mental Health, 2017, 26, 111-118.	1.0	11
49	Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: the case of eastern Kopaida, central Greece. Applied Water Science, 2017, 7, 2215-2229.	2.8	7
50	Spirituality and Awareness of Diagnoses in Terminally III Patients With Cancer. American Journal of Hospice and Palliative Medicine, 2017, 34, 505-509.	0.8	19
51	Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science of the Total Environment, 2017, 601-602, 821-832.	3.9	122
52	Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology, 2017, 288, 52-65.	1.1	78
53	Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model. Environmental Modelling and Software, 2017, 97, 145-156.	1.9	112
54	Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region. Geoderma, 2017, 286, 35-45.	2.3	48

#	Article	IF	CITATIONS
55	Presence-only approach to assess landslide triggering-thickness susceptibility: a test for the Mili catchment (north-eastern Sicily, Italy). Natural Hazards, 2016, 84, 565-588.	1.6	44
56	Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (northâ€eastern Sicily, Italy). Earth Surface Processes and Landforms, 2016, 41, 1776-1789.	1.2	52
57	Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy). Environmental Earth Sciences, 2016, 75, 1.	1.3	89
58	Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy. Geomorphology, 2016, 261, 222-235.	1.1	106
59	Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Natural Hazards, 2015, 79, 1621-1648.	1.6	149
60	Predicting storm-triggered debris flow events: application to the 2009 Ionian Peloritan disaster (Sicily, Italy). Natural Hazards and Earth System Sciences, 2015, 15, 1785-1806.	1.5	49
61	Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater. Near Surface Geophysics, 2014, 12, 45-59.	0.6	20
62	A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster. Natural Hazards, 2014, 74, 1951-1989.	1.6	67
63	Predictive Role of Different Dimensions of Burden for Risk of Complicated Grief in Caregivers of Terminally Ill Patients. American Journal of Hospice and Palliative Medicine, 2014, 31, 189-193.	0.8	21
64	Pre-Loss Demographic and Psychological Predictors of Complicated Grief among Relatives of Terminally III Cancer Patients. Psychotherapy and Psychosomatics, 2012, 81, 256-258.	4.0	14
65	From scenario-based seismic hazard to scenario-based landslide hazard: rewinding to the past via statistical simulations. Stochastic Environmental Research and Risk Assessment, 0, , 1.	1.9	8
66	Comments on: "Prediction of rainfall induced landslide movements by artificial neural networks" by Logar et al. (2017). , 0, , .		0