## Afshin Afshin Anssari-Benam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263565/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. International Journal of Non-Linear Mechanics, 2021, 128, 103626.                                                                      | 2.6 | 59        |
| 2  | A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation. Journal of Materials Science: Materials in Medicine, 2011, 22, 253-262.                                                                   | 3.6 | 49        |
| 3  | On the central role of the invariant I2 in nonlinear elasticity. International Journal of Engineering<br>Science, 2021, 163, 103486.                                                                                                             | 5.0 | 39        |
| 4  | Modeling the Deformation of the Elastin Network in the Aortic Valve. Journal of Biomechanical<br>Engineering, 2018, 140, .                                                                                                                       | 1.3 | 30        |
| 5  | Modelling the Inflation and Elastic Instabilities of Rubber-Like Spherical and Cylindrical Shells Using a<br>New Generalised Neo-Hookean Strain Energy Function. Journal of Elasticity, 2022, 151, 15-45.                                        | 1.9 | 29        |
| 6  | Anisotropic time-dependant behaviour of the aortic valve. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2011, 4, 1603-1610.                                                                                                     | 3.1 | 25        |
| 7  | A transverse isotropic viscoelastic constitutive model for aortic valve tissue. Royal Society Open<br>Science, 2017, 4, 160585.                                                                                                                  | 2.4 | 23        |
| 8  | On a new class of non-Gaussian molecular-based constitutive models with limiting chain extensibility for incompressible rubber-like materials. Mathematics and Mechanics of Solids, 2021, 26, 1660-1674.                                         | 2.4 | 23        |
| 9  | Extension and torsion of rubber-like hollow and solid circular cylinders for incompressible<br>isotropic hyperelastic materials with limiting chain extensibility. European Journal of Mechanics,<br>A/Solids, 2022, 92, 104443.                 | 3.7 | 22        |
| 10 | On the specimen length dependency of tensile mechanical properties in soft tissues: Gripping effects and the characteristic decay length. Journal of Biomechanics, 2012, 45, 2481-2482.                                                          | 2.1 | 19        |
| 11 | Rate-dependency of the mechanical behaviour of semilunar heart valves under biaxial deformation.<br>Acta Biomaterialia, 2019, 88, 120-130.                                                                                                       | 8.3 | 18        |
| 12 | A three-parameter structurally motivated robust constitutive model for isotropic incompressible<br>unfilled and filled rubber-like materials. European Journal of Mechanics, A/Solids, 2022, 95, 104605.                                         | 3.7 | 18        |
| 13 | Strain Transfer Through the Aortic Valve. Journal of Biomechanical Engineering, 2012, 134, 061003.                                                                                                                                               | 1.3 | 17        |
| 14 | On Modelling Simple Shear for Isotropic Incompressible Rubber-Like Materials. Journal of Elasticity, 2021, 147, 83-111.                                                                                                                          | 1.9 | 17        |
| 15 | A transverse isotropic constitutive model for the aortic valve tissue incorporating rate-dependency<br>and fibre dispersion: Application to biaxial deformation. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2018, 85, 80-93. | 3.1 | 14        |
| 16 | Thermodynamic effects of linear dissipative small deformations. Journal of Thermal Analysis and Calorimetry, 2010, 100, 941-947.                                                                                                                 | 3.6 | 13        |
| 17 | ASSESSMENT OF A NEW ISOTROPIC HYPERELASTIC CONSTITUTIVE MODEL FOR A RANGE OF RUBBERLIKE MATERIALS AND DEFORMATIONS. Rubber Chemistry and Technology, 2022, 95, 200-217.                                                                          | 1.2 | 13        |
| 18 | Insights into the micromechanics of stress-relaxation and creep behaviours in the aortic valve.<br>Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 230-245.                                                                | 3.1 | 12        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Unified viscoelasticity: Applying discrete element models to soft tissues with two characteristic times. Journal of Biomechanics, 2015, 48, 3128-3134.                                                                    | 2.1 | 8         |
| 20 | Atherosclerotic plaques: Is endothelial shear stress the only factor?. Medical Hypotheses, 2013, 81, 235-239.                                                                                                             | 1.5 | 7         |
| 21 | Rate-dependent mechanical behaviour of semilunar valves under biaxial deformation: From<br>quasi-static to physiological loading rates. Journal of the Mechanical Behavior of Biomedical<br>Materials, 2020, 104, 103645. | 3.1 | 7         |
| 22 | Is the time-dependent behaviour of the aortic valve intrinsically quasi-linear?. Mechanics of<br>Time-Dependent Materials, 2014, 18, 339-348.                                                                             | 4.4 | 6         |
| 23 | Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach.<br>Journal of Materials Science: Materials in Medicine, 2016, 27, 42.                                               | 3.6 | 6         |
| 24 | The Generalised Mooney Space for Modelling the Response of Rubber-Like Materials. Journal of Elasticity, 2022, 151, 127-141.                                                                                              | 1.9 | 6         |
| 25 | New constitutive models for the finite deformation of isotropic compressible elastomers. Mechanics of Materials, 2022, 172, 104403.                                                                                       | 3.2 | 6         |
| 26 | Specialized Strain Energy Functions for Modeling the Contribution of the Collagen Network<br>(Waniso) to the Deformation of Soft Tissues. Journal of Applied Mechanics, Transactions ASME, 2020,<br>87, .                 | 2.2 | 5         |
| 27 | Torsional instability of incompressible hyperelastic rubber-like solid circular cylinders with limiting chain extensibility. International Journal of Solids and Structures, 2022, 238, 111396.                           | 2.7 | 5         |
| 28 | New results in the theory of plane strain flexure of incompressible isotropic hyperelastic materials.<br>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .                | 2.1 | 4         |
| 29 | Modelling the rate-dependency of the mechanical behaviour of the aortic heart valve: An<br>experimentally guided theoretical framework. Journal of the Mechanical Behavior of Biomedical<br>Materials, 2022, 134, 105341. | 3.1 | 2         |