
Pedro S Babo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263142/publications.pdf Version: 2024-02-01

DEDDO S RARO

#	Article	IF	CITATIONS
1	Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals. Carbohydrate Polymers, 2022, 292, 119638.	5.1	8
2	Platelet-Derived Products in Veterinary Medicine: A New Trend or an Effective Therapy?. Trends in Biotechnology, 2021, 39, 225-243.	4.9	15
3	Epitopeâ€Imprinted Nanoparticles as Transforming Growth Factorâ€Î²3 Sequestering Ligands to Modulate Stem Cell Fate. Advanced Functional Materials, 2021, 31, 2003934.	7.8	21
4	Supplementary solvent irrigation efficacy on filling remnants removal comparing XP-endo Finisher R vs IrriSafe. Scientific Reports, 2021, 11, 12659.	1.6	6
5	Hyaluronic Acid Oligomer Immobilization as an Angiogenic Trigger for the Neovascularization of TE Constructs. ACS Applied Bio Materials, 2021, 4, 6023-6035.	2.3	2
6	Standardized Platelet-Rich Fibrin (PRF) from canine and feline origin: An analysis on its secretome pattern and architectural structure. Cytokine, 2021, 148, 155695.	1.4	8
7	Evaluation of Injectable Hyaluronic Acid-Based Hydrogels for Endodontic Tissue Regeneration. Materials, 2021, 14, 7325.	1.3	7
8	Platelet-rich Blood Derivatives for Tendon Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2020, 28, e202-e205.	1.1	6
9	Bioinspired materials and tissue engineering approaches applied to the regeneration of musculoskeletal tissues. , 2020, , 73-105.		1
10	Tissue engineering strategies for the treatment of skeletal maxillofacial defects resulting from neoplasms resections. , 2020, , 697-730.		0
11	Intrinsically Bioactive Cryogels Based on Platelet Lysate Nanocomposites for Hemostasis Applications. Biomacromolecules, 2020, 21, 3678-3692.	2.6	25
12	Effect of Sonic Agitation of a Binary Mixture of Solvents on Filling Remnants Removal as an Alternative to Apical Enlargement—A Micro-CT Study. Journal of Clinical Medicine, 2020, 9, 2465.	1.0	6
13	Natural-Based Hydrogels for Tissue Engineering Applications. Molecules, 2020, 25, 5858.	1.7	93
14	Evaluation of hematology, general serum biochemistry, bone turnover markers and bone marrow cytology in a glucocorticoid treated ovariectomized sheep model for osteoporosis research. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200435.	0.3	2
15	Tuneable cellulose nanocrystal and tropoelastin-laden hyaluronic acid hydrogels. Journal of Biomaterials Applications, 2019, 34, 560-572.	1.2	2
16	Injectable and Magnetic Responsive Hydrogels with Bioinspired Ordered Structures. ACS Biomaterials Science and Engineering, 2019, 5, 1392-1404.	2.6	54
17	Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research. Current Osteoporosis Reports, 2018, 16, 182-197.	1.5	32
18	Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 1066-1075.	2.9	13

Pedro S Babo

#	Article	IF	CITATIONS
19	The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomaterialia, 2018, 68, 29-40.	4.1	22
20	Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Advanced Drug Delivery Reviews, 2018, 129, 376-393.	6.6	59
21	Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2375-2385.	1.7	65
22	Evaluation of a platelet lysate bilayered system for periodontal regeneration in a rat intrabony threeâ€wall periodontal defect. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1277-e1288.	1.3	15
23	Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet-rich fibrin and bone marrow with a tailored 3D printed implant. Journal of Feline Medicine and Surgery, 2018, 20, 835-843.	0.6	14
24	3D Functional scaffolds for dental tissue engineering. , 2018, , 423-450.		2
25	Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomaterialia, 2018, 77, 155-171.	4.1	109
26	Hyaluronic acid hydrogels incorporating platelet lysate enhance human pulp cell proliferation and differentiation. Journal of Materials Science: Materials in Medicine, 2018, 29, 88.	1.7	42
27	Periodontal tissue engineering: current strategies and the role of platelet rich hemoderivatives. Journal of Materials Chemistry B, 2017, 5, 3617-3628.	2.9	20
28	Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.	1.6	15
29	Platelet Lysate-Loaded Photocrosslinkable Hyaluronic Acid Hydrogels for Periodontal Endogenous Regenerative Technology. ACS Biomaterials Science and Engineering, 2017, 3, 1359-1369.	2.6	34
30	Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.	2.6	45
31	Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules, 2016, 17, 1985-1997.	2.6	18
32	The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration. Tissue Engineering - Part A, 2016, 22, 1164-1175.	1.6	15
33	Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration. Macromolecular Bioscience, 2016, 16, 1662-1677.	2.1	24
34	A Radially Organized Multipatterned Device as a Diagnostic Tool for the Screening of Topographies in Tissue Engineering Biomaterials. Tissue Engineering - Part C: Methods, 2016, 22, 914-922.	1.1	5
35	Assessment of bone healing ability of calcium phosphate cements loaded with platelet lysate in rat calvarial defects. Journal of Biomaterials Applications, 2016, 31, 637-649.	1.2	12
36	Production and characterization of hyaluronic acid microparticles for the controlled delivery of growth factors using a spray/dehydration method. Journal of Biomaterials Applications, 2016, 31, 693-707.	1.2	15

Pedro S Babo

#	Article	IF	CITATIONS
37	Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry, 2015, 26, 1571-1581.	1.8	172
38	Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflammation and Regeneration, 2014, 34, 033-044.	1.5	28
39	Membranes for periodontal tissues regeneration. Ciência & Tecnologia Dos Materiais, 2014, 26, 108-117.	0.5	8
40	Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theoretical and Applied Genetics, 2011, 123, 881-895.	1.8	71