
Jonathan M Cullen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nature Climate Change, 2022, 12, 36-46.	18.8	133
2	Wind Turbine Blades Using Recycled Carbon Fibers: An Environmental Assessment. Environmental Science & amp; Technology, 2022, 56, 1267-1277.	10.0	16
3	Selection criteria for planning cold food chain traceability technology enabling industry 4.0. Procedia Computer Science, 2022, 200, 1695-1704.	2.0	2
4	Plastics and climate change—Breaking carbon lock-ins through three mitigation pathways. One Earth, 2022, 5, 361-376.	6.8	52
5	Material Flows and Efficiency. Annual Review of Materials Research, 2022, 52, 525-559.	9.3	7
6	A new method to estimate the lifetime of longâ€life product categories. Journal of Industrial Ecology, 2021, 25, 321-332.	5.5	6
7	Calculating the chemical exergy of materials. Journal of Industrial Ecology, 2021, 25, 274-287.	5.5	23
8	Global material flow analysis of glass: From raw materials to end of life. Journal of Industrial Ecology, 2021, 25, 333-343.	5.5	33
9	Material efficiency for climate change mitigation. Journal of Industrial Ecology, 2021, 25, 254-259.	5.5	6
10	Food traceability: A generic theoretical framework. Food Control, 2021, 123, 107848.	5.5	59
11	Creating a Water Quality Scale Methodology Using California as a Case Study. Journal of Sustainable Water in the Built Environment, 2021, 7, 05021001.	1.6	1
12	Visualising food traceability systems: A novel system architecture for mapping material and information flow. Trends in Food Science and Technology, 2021, 112, 708-719.	15.1	15
13	A Hybrid Traceability Technology Selection Approach for Sustainable Food Supply Chains. Sustainability, 2021, 13, 9385.	3.2	10
14	A corridors and power-oriented perspective on energy-service demand and needs satisfaction. Sustainability: Science, Practice, and Policy, 2021, 17, 162-172.	1.9	5
15	Technical limits for energy conversion efficiency. Energy, 2020, 192, 116228.	8.8	10
16	The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature Communications, 2020, 11, 3777.	12.8	97
17	Modelling transport emissions in an uncertain future: What actions make a difference?. Transportation Research, Part D: Transport and Environment, 2020, 89, 102614.	6.8	12
18	Exergy and network analysis of chemical sites. Sustainable Production and Consumption, 2019, 19, 270-288.	11.0	13

JONATHAN M CULLEN

#	Article	IF	CITATIONS
19	Do technical improvements lead to real efficiency gains? Disaggregating changes in transport energy intensity. Energy Policy, 2019, 134, 110991.	8.8	12
20	A marginal abatement cost curve for material efficiency accounting for uncertainty. Resources, Conservation and Recycling, 2019, 144, 39-47.	10.8	16
21	Exergy: A universal metric for measuring resource efficiency to address industrial decarbonisation. Sustainable Production and Consumption, 2019, 20, 151-164.	11.0	34
22	Options to make steel reuse profitable: An analysis of cost and risk distribution across the UK construction value chain. Journal of Cleaner Production, 2018, 183, 102-111.	9.3	52
23	How resource-efficient is the global steel industry?. Resources, Conservation and Recycling, 2018, 133, 132-145.	10.8	51
24	Regularity and optimisation practice in steel structural frames in real design cases. Resources, Conservation and Recycling, 2018, 134, 294-302.	10.8	21
25	Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. Environmental Science & Technology, 2018, 52, 1725-1734.	10.0	189
26	Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants. Applied Energy, 2018, 218, 232-245.	10.1	14
27	Useful energy balance for the UK: An uncertainty analysis. Applied Energy, 2018, 228, 176-188.	10.1	11
28	Toward a sustainable materials system. Science, 2018, 360, 1396-1398.	12.6	143
29	Leveraging material efficiency as an energy and climate instrument for heavy industries in the EU. Energy Policy, 2018, 120, 533-549.	8.8	17
30	A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy, 2018, 3, 515-527.	39.5	733
31	Circular Economy: Theoretical Benchmark or Perpetual Motion Machine?. Journal of Industrial Ecology, 2017, 21, 483-486.	5.5	192
32	Taking the Circularity to the Next Level: A Special Issue on the Circular Economy. Journal of Industrial Ecology, 2017, 21, 476-482.	5.5	223
33	The Need for Robust, Consistent Methods in Societal Exergy Accounting. Ecological Economics, 2017, 141, 11-21.	5.7	41
34	Understanding and overcoming the barriers to structural steel reuse, a UK perspective. Journal of Cleaner Production, 2017, 148, 642-652.	9.3	150
35	Real and perceived barriers to steel reuse across the UK construction value chain. Resources, Conservation and Recycling, 2017, 126, 118-131.	10.8	46
36	Resource efficiency in steelmaking: energy and materials combined. Energy Procedia, 2017, 142, 2429-2434.	1.8	4

JONATHAN M CULLEN

#	Article	IF	CITATIONS
37	From control data to real-time resource maps in a steel-making plant. Energy Procedia, 2017, 142, 2377-2383.	1.8	0
38	Probabilistic model allocating primary energy to end-use devices. Energy Procedia, 2017, 142, 2441-2447.	1.8	5
39	Unlocking Plant-level Resource Efficiency Options: A Unified Exergy Measure. Procedia CIRP, 2016, 48, 122-127.	1.9	7
40	A General Nonlinear Least Squares Data Reconciliation and Estimation Method for Material Flow Analysis. Journal of Industrial Ecology, 2016, 20, 1038-1049.	5.5	8
41	Potential reduction of carbon emissions by performance improvement: A cement industry case study. Journal of Cleaner Production, 2016, 135, 1327-1339.	9.3	90
42	The influence of UK emissions reduction targets on the emissions of the global steel industry. Resources, Conservation and Recycling, 2016, 107, 174-184.	10.8	36
43	Designing Climate Change Mitigation Plans That Add Up. Environmental Science & Technology, 2013, 47, 8062-8069.	10.0	69
44	Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods. Environmental Science & Technology, 2013, 47, 3057-3064.	10.0	183
45	Mapping the Global Flow of Steel: From Steelmaking to End-Use Goods. Environmental Science & Technology, 2012, 46, 13048-13055.	10.0	176
46	The use of energy in China: Tracing the flow of energy from primary source toÂdemand drivers. Energy, 2012, 40, 174-188.	8.8	67
47	Reducing Energy Demand: What Are the Practical Limits?. Environmental Science & Technology, 2011, 45, 1711-1718.	10.0	116
48	Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resources, Conservation and Recycling, 2011, 55, 1185-1195.	10.8	122
49	Theoretical efficiency limits for energy conversion devices. Energy, 2010, 35, 2059-2069.	8.8	159
50	The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy, 2010, 38, 75-81.	8.8	188
51	Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050. Environmental Science & Technology, 2010, 44, 1888-1894.	10.0	366
52	The Role of Washing Machines in Life Cycle Assessment Studies. Journal of Industrial Ecology, 2009, 13, 27-37.	5.5	42
53	Dynamic exergy analysis: From industrial data to exergy flows. Journal of Industrial Ecology, 0, , .	5.5	6