
Noam Zelcer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defective Lipid Droplet–Lysosome Interaction Causes Fatty Liver Disease as Evidenced by Human Mutations in TMEM199 and CCDC115. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 583-597.	2.3	8
2	Four-and-a-half LIM domain protein 2 (FHL2) deficiency protects mice from diet-induced obesity and high FHL2 expression marks human obesity. Metabolism: Clinical and Experimental, 2021, 121, 154815.	1.5	12
3	Liver X receptor beta deficiency attenuates autoimmune-associated neuroinflammation in a T cell-dependent manner. Journal of Autoimmunity, 2021, 124, 102723.	3.0	8
4	Regulation of intestinal LDLR by the LXR-IDOL axis. Atherosclerosis, 2020, 315, 1-9.	0.4	13
5	Structural analysis of the LDL receptor–interacting FERM domain in the E3 ubiquitin ligase IDOL reveals an obscured substrate-binding site. Journal of Biological Chemistry, 2020, 295, 13570-13583.	1.6	7
6	The MARCH6-SQLE Axis Controls Endothelial Cholesterol Homeostasis and Angiogenic Sprouting. Cell Reports, 2020, 32, 107944.	2.9	11
7	Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. Journal of Experimental Medicine, 2020, 217, .	4.2	72
8	Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism. Nature Communications, 2020, 11, 1128.	5.8	30
9	Industrial Trans Fatty Acids Stimulate SREBP2â€Mediated Cholesterogenesis and Promote Nonâ€Alcoholic Fatty Liver Disease. Molecular Nutrition and Food Research, 2019, 63, e1900385.	1.5	32
10	Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis. Atherosclerosis, 2019, 281, 137-142.	0.4	30
11	N-Glycosylation Defects in Humans Lower Low-Density Lipoprotein Cholesterol Through Increased Low-Density Lipoprotein Receptor Expression. Circulation, 2019, 140, 280-292.	1.6	26
12	FBXW7 regulates endothelial barrier function by suppression of the cholesterol synthesis pathway and prenylation of RhoB. Molecular Biology of the Cell, 2019, 30, 607-621.	0.9	12
13	The E3 ubiquitin ligase inducible degrader of the LDL receptor/myosin light chain interacting protein in health and disease. Current Opinion in Lipidology, 2019, 30, 192-197.	1.2	12
14	(Pro)renin Receptor Inhibition Reprograms Hepatic Lipid Metabolism and Protects Mice From Diet-Induced Obesity and Hepatosteatosis. Circulation Research, 2018, 122, 730-741.	2.0	46
15	Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism. Cell Reports, 2018, 24, 2127-2140.e7.	2.9	110
16	Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1785-1795.	1.1	22
17	IDOL in metabolic, neurodegenerative and cardiovascular disease. Aging, 2018, 10, 3042-3043.	1.4	4
18	EEPD1 Is a Novel LXR Target Gene in Macrophages Which Regulates ABCA1 Abundance and Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 423-432.	1.1	25

NOAM ZELCER

#	Article	IF	CITATIONS
19	Assaying Low-Density-Lipoprotein (LDL) Uptake into Cells. Methods in Molecular Biology, 2017, 1583, 53-63.	0.4	11
20	LRSAM1-mediated ubiquitylation is disrupted in axonal Charcot–Marie–Tooth disease 2P. Human Molecular Genetics, 2017, 26, 2034-2041.	1.4	13
21	Haploid Mammalian Genetic Screen Identifies UBXD8 as a Key Determinant of HMGCR Degradation and Cholesterol Biosynthesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2064-2074.	1.1	25
22	Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene. PLoS ONE, 2017, 12, e0172721.	1.1	23
23	A PPARÎ ³ -Bnip3 Axis Couples Adipose Mitochondrial Fusion-Fission Balance to Systemic Insulin Sensitivity. Diabetes, 2016, 65, 2591-2605.	0.3	45
24	Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake. Journal of Biological Chemistry, 2016, 291, 4813-4825.	1.6	20
25	The Deubiquitylase USP2 Regulates the LDLR Pathway by Counteracting the E3-Ubiquitin Ligase IDOL. Circulation Research, 2016, 118, 410-419.	2.0	43
26	A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes. Molecular and Cellular Biology, 2016, 36, 285-294.	1.1	35
27	Identification of the (Pro)renin Receptor as a Novel Regulator of Low-Density Lipoprotein Metabolism. Circulation Research, 2016, 118, 222-229.	2.0	37
28	Idolizing the clearance of Amyloid-β by microglia. Annals of Translational Medicine, 2016, 4, 536-536.	0.7	3
29	Enolase is regulated by Liver X Receptors. Steroids, 2015, 99, 266-271.	0.8	3
30	LIM-Only Protein FHL2 Is a Positive Regulator of Liver X Receptors in Smooth Muscle Cells Involved in Lipid Homeostasis. Molecular and Cellular Biology, 2015, 35, 52-62.	1.1	19
31	Mutations in <i>STAP1</i> Are Associated With Autosomal Dominant Hypercholesterolemia. Circulation Research, 2014, 115, 552-555.	2.0	146
32	Adeno-Associated Viruses as a Method to Induce Atherosclerosis in Mice and Hamsters. Circulation Research, 2014, 114, 1672-1674.	2.0	1
33	The E3 Ubiquitin Ligase MARCH6 Degrades Squalene Monooxygenase and Affects 3-Hydroxy-3-Methyl-Glutaryl Coenzyme A Reductase and the Cholesterol Synthesis Pathway. Molecular and Cellular Biology, 2014, 34, 1262-1270.	1.1	124
34	Impaired trafficking of the very low density lipoprotein receptor caused by missense mutations associated with dysequilibrium syndrome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2871-2877.	1.9	11
35	The UPS and downs of cholesterol homeostasis. Trends in Biochemical Sciences, 2014, 39, 527-535.	3.7	67
36	One E3 ligase targets two key control points in cholesterol synthesis (605.5). FASEB Journal, 2014, 28, 605.5.	0.2	0

NOAM ZELCER

#	Article	IF	CITATIONS
37	Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathologica Communications, 2013, 1, 43.	2.4	64
38	The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. Journal of Lipid Research, 2013, 54, 2174-2184.	2.0	60
39	Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein. European Heart Journal, 2013, 34, 1292-1297.	1.0	49
40	NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. Journal of Cell Science, 2013, 126, 3961-71.	1.2	64
41	Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor. Current Opinion in Lipidology, 2012, 23, 213-219.	1.2	48
42	A frameshift mutation in LRSAM1 is responsible for a dominant hereditary polyneuropathy. Human Molecular Genetics, 2012, 21, 358-370.	1.4	55
43	Fibroblast Growth Factor-21 (FGF21) Regulates Low-density Lipoprotein Receptor (LDLR) Levels in Cells via the E3-ubiquitin Ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting Saposin-like Protein (Msap). Journal of Biological Chemistry, 2012, 287, 12602-12611.	1.6	56
44	Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. European Heart Journal, 2012, 33, 1360-1366.	1.0	76
45	Targeted Disruption of the Idol Gene Alters Cellular Regulation of the Low-Density Lipoprotein Receptor by Sterols and Liver X Receptor Agonists. Molecular and Cellular Biology, 2011, 31, 1885-1893.	1.1	69
46	Distinct Functional Domains Contribute to Degradation of the Low Density Lipoprotein Receptor (LDLR) by the E3 Ubiquitin Ligase Inducible Degrader of the LDLR (IDOL). Journal of Biological Chemistry, 2011, 286, 30190-30199.	1.6	45
47	The N342S MYLIP polymorphism is associated with high total cholesterol and increased LDL receptor degradation in humans. Journal of Clinical Investigation, 2011, 121, 3062-3071.	3.9	50
48	The E3 Ubiquitin Ligase IDOL Induces the Degradation of the Low Density Lipoprotein Receptor Family Members VLDLR and ApoER2. Journal of Biological Chemistry, 2010, 285, 19720-19726.	1.6	117
49	LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor. Science, 2009, 325, 100-104.	6.0	661
50	Apoptotic Cells Promote Their Own Clearance and Immune Tolerance through Activation of the Nuclear Receptor LXR. Immunity, 2009, 31, 245-258.	6.6	564
51	ApoE Promotes the Proteolytic Degradation of AÎ ² . Neuron, 2008, 58, 681-693.	3.8	779
52	LXR Signaling Couples Sterol Metabolism to Proliferation in the Acquired Immune Response. Cell, 2008, 134, 97-111.	13.5	579
53	Multidrug Resistance Proteins 2 and 3 Provide Alternative Routes for Hepatic Excretion of Morphine-Glucuronides. Molecular Pharmacology, 2007, 72, 387-394.	1.0	97
54	Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10601-10606.	3.3	294

NOAM ZELCER

#	Article	IF	CITATIONS
55	Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. Journal of Hepatology, 2006, 44, 768-775.	1.8	158
56	Liver X receptors as integrators of metabolic and inflammatory signaling. Journal of Clinical Investigation, 2006, 116, 607-614.	3.9	823
57	Altered disposition of acetaminophen in mice with a disruption of theMrp3 gene. Hepatology, 2005, 42, 1091-1098.	3.6	99
58	In vivo RNA Interference–Mediated Ablation of MDR1 P-Glycoprotein. Clinical Cancer Research, 2005, 11, 4487-4494.	3.2	100
59	Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7274-7279.	3.3	191
60	The Human Multidrug Resistance Protein MRP5 Transports Folates and Can Mediate Cellular Resistance against Antifolates. Cancer Research, 2005, 65, 4425-4430.	0.4	114
61	SUMOylation and PPARÎ ³ : Wrestling with inflammatory signaling. Cell Metabolism, 2005, 2, 273-275.	7.2	18
62	Interactions between Hepatic Mrp4 and Sult2a as Revealed by the Constitutive Androstane Receptor and Mrp4 Knockout Mice. Journal of Biological Chemistry, 2004, 279, 22250-22257.	1.6	211
63	Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins. Biochemical Pharmacology, 2004, 67, 31-39.	2.0	57
64	Mechanism of the Pharmacokinetic Interaction between Methotrexate and Benzimidazoles. Cancer Research, 2004, 64, 5804-5811.	0.4	222
65	THE MULTIDRUG RESISTANCE PROTEINS 3–7. , 2003, , 445-458.		6
66	The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9244-9249.	3.3	478
67	Evidence for Two Interacting Ligand Binding Sites in Human Multidrug Resistance Protein 2 (ATP) Tj ETQq1 2	l 0.784314 rg 1.6	gBT /Oyerlock
68	Characterization of the Transport of Nucleoside Analog Drugs by the Human Multidrug Resistance Proteins MRP4 and MRP5. Molecular Pharmacology, 2003, 63, 1094-1103.	1.0	346
69	Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochemical Journal, 2003, 371, 361-367.	1.7	291
70	Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Biochemical Journal, 2003, 369, 23-30.	1.7	93
71	Inhibition of the Multidrug Resistance Protein 1 (MRP1) by Peptidomimetic Glutathione-Conjugate Analogs. Molecular Pharmacology, 2002, 62, 1160-1166.	1.0	38
72	Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. Aids, 2002, 16, 2295-2301.	1.0	198

#	Article	IF	CITATIONS
73	Characterization of Drug Transport by the Human Multidrug Resistance Protein 3 (ABCC3). Journal of Biological Chemistry, 2001, 276, 46400-46407.	1.6	227