
Jani Reddy Bolla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9262428/publications.pdf Version: 2024-02-01

IANI REDDY ROLLA

#	Article	IF	CITATIONS
1	lon currents through Kir potassium channels are gated by anionic lipids. Nature Communications, 2022, 13, 490.	5.8	9
2	Peptidoglycan biosynthesis is driven by lipid transfer along enzyme-substrate affinity gradients. Nature Communications, 2022, 13, 2278.	5.8	20
3	Cryoâ€EM structures of pentameric autoinducerâ€2 exporter from <i>Escherichia coli</i> reveal its transport mechanism. EMBO Journal, 2022, 41, .	3.5	8
4	Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nature Chemical Biology, 2021, 17, 187-195.	3.9	41
5	The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature, 2021, 593, 125-129.	13.7	112
6	Multiple Roles of SARS-CoV-2 N Protein Facilitated by Proteoform-Specific Interactions with RNA, Host Proteins, and Convalescent Antibodies. Jacs Au, 2021, 1, 1147-1157.	3.6	28
7	Architecture of cell–cell junctions in situ reveals a mechanism for bacterial biofilm inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
8	The molecular basis of regulation of bacterial capsule assembly by Wzc. Nature Communications, 2021, 12, 4349.	5.8	25
9	Competitive binding of MatP and topoisomerase IV to the MukB hinge domain. ELife, 2021, 10, .	2.8	8
10	Mass spectrometry informs the structure and dynamics of membrane proteins involved in lipid and drug transport. Current Opinion in Structural Biology, 2021, 70, 53-60.	2.6	12
11	Structural Basis for Silicic Acid Uptake by Higher Plants. Journal of Molecular Biology, 2021, 433, 167226.	2.0	18
12	A â€ [~] Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75.	9.0	71
13	Mass spectrometry enables the discovery of inhibitors of an LPS transport assembly <i>via</i> disruption of protein–protein interactions. Chemical Communications, 2021, 57, 10747-10750.	2.2	6
14	The structure of nontypeable Haemophilus influenzae SapA in a closed conformation reveals a constricted ligand-binding cavity and a novel RNA binding motif. PLoS ONE, 2021, 16, e0256070.	1.1	3
15	Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation. Nature Communications, 2021, 12, 6721.	5.8	12
16	A Mass‧pectrometryâ€Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angewandte Chemie - International Edition, 2020, 59, 3523-3528.	7.2	33
17	A Massâ€ S pectrometryâ€Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angewandte Chemie, 2020, 132, 3551-3556.	1.6	2
18	Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Molecular Cell, 2020, 80, 72-86.e7.	4.5	71

Jani Reddy Bolla

#	Article	IF	CITATIONS
19	Allosteric Inhibition of the SARSâ€CoVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie, 2020, 132, 23750-23754.	1.6	10
20	Allosteric Inhibition of the SARSâ€CoVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie - International Edition, 2020, 59, 23544-23548.	7.2	92
21	Combining native and â€~omics' mass spectrometry to identify endogenous ligands bound to membrane proteins. Nature Methods, 2020, 17, 505-508.	9.0	111
22	A constricted opening in Kir channels does not impede potassium conduction. Nature Communications, 2020, 11, 3024.	5.8	14
23	The use of sonicated lipid vesicles for mass spectrometry of membrane protein complexes. Nature Protocols, 2020, 15, 1690-1706.	5.5	30
24	Structure and function of LCI1: a plasma membrane CO 2 channel in the Chlamydomonas CO 2 concentrating mechanism. Plant Journal, 2020, 102, 1107-1126.	2.8	17
25	Assembly and regulation of the chlorhexidine-specific efflux pump Acel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17011-17018.	3.3	33
26	Investigating the Conformational Dynamics of the Outer Membrane LPS Translocon LptDE. Biophysical Journal, 2020, 118, 26a.	0.2	0
27	Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors. Nature Communications, 2020, 11, 564.	5.8	72
28	Targeting MmpL3 for anti-tuberculosis drug development. Biochemical Society Transactions, 2020, 48, 1463-1472.	1.6	24
29	Dynamic architecture of the Escherichia coli structural maintenance of chromosomes (SMC) complex, MukBEF. Nucleic Acids Research, 2019, 47, 9696-9707.	6.5	20
30	MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11241-11246.	3.3	94
31	Membrane Protein–Lipid Interactions Probed Using Mass Spectrometry. Annual Review of Biochemistry, 2019, 88, 85-111.	5.0	121
32	The Different Effects of Substrates and Nucleotides on the Complex Formation of ABC Transporters. Structure, 2019, 27, 651-659.e3.	1.6	19
33	Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nature Chemistry, 2018, 10, 363-371.	6.6	65
34	Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nature Communications, 2017, 8, 171.	5.8	69
35	The structural basis for CD36 binding by the malaria parasite. Nature Communications, 2016, 7, 12837.	5.8	160
36	Crystal structure of the <i>Mycobacterium tuberculosis</i> transcriptional regulator Rv0302. Protein Science, 2015, 24, 1942-1955.	3.1	11

Jani Reddy Bolla

#	Article	IF	CITATIONS
37	Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology. Nature Communications, 2015, 6, 6874.	5.8	35
38	Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps. Cell Reports, 2015, 11, 61-70.	2.9	44
39	Crystallization of Membrane Proteins by Vapor Diffusion. Methods in Enzymology, 2015, 557, 363-392.	0.4	14
40	Structural Basis for the Regulation of the MmpL Transporters of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2015, 290, 28559-28574.	1.6	29
41	Crystal Structure of the Open State of the Neisseria gonorrhoeae MtrE Outer Membrane Channel. PLoS ONE, 2014, 9, e97475.	1.1	51
42	Crystal Structure of the Neisseria gonorrhoeae MtrD Inner Membrane Multidrug Efflux Pump. PLoS ONE, 2014, 9, e97903.	1.1	65
43	Crystal structure of the transcriptional regulator Rv1219c of <i>Mycobacterium tuberculosis</i> . Protein Science, 2014, 23, 423-432.	3.1	24
44	Crystal structure of the <i>Campylobacter jejuni</i> CmeC outer membrane channel. Protein Science, 2014, 23, 954-961.	3.1	30
45	Crystal Structures of CusC Review Conformational Changes Accompanying Folding and Transmembrane Channel Formation. Journal of Molecular Biology, 2014, 426, 403-411.	2.0	36
46	Crystal Structure of the Transcriptional Regulator Rv0678 of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2014, 289, 16526-16540.	1.6	65
47	Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1047-1058.	1.8	72
48	Structural and functional analysis of the transcriptional regulator Rv3066 of Mycobacterium tuberculosis. Nucleic Acids Research, 2012, 40, 9340-9355.	6.5	44
49	Biomolecular membrane protein crystallization. Philosophical Magazine, 2012, 92, 2648-2661.	0.7	11
50	Charged Amino Acids (R83, E567, D617, E625, R669, and K678) of CusA Are Required for Metal Ion Transport in the Cus Efflux System. Journal of Molecular Biology, 2012, 422, 429-441.	2.0	51