
Parvathi Menon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nature Reviews Neurology, 2016, 12, 651-661.	10.1	165
2	Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurology, The, 2015, 14, 478-484.	10.2	164
3	Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clinical Neurophysiology, 2015, 126, 803-809.	1.5	140
4	Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. Brain, 2013, 136, 1361-1370.	7.6	123
5	Rate of disease progression: a prognostic biomarker in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 628-632.	1.9	123
6	Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2018, 75, 681.	9.0	120
7	Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clinical Neurophysiology, 2013, 124, 410-416.	1.5	97
8	Motor cortical function determines prognosis in sporadic ALS. Neurology, 2016, 87, 513-520.	1.1	76
9	Cortical Dysfunction Underlies the Development of the Split-Hand in Amyotrophic Lateral Sclerosis. PLoS ONE, 2014, 9, e87124.	2.5	75
10	Awaji criteria improves the diagnostic sensitivity in amyotrophic lateral sclerosis: A systematic review using individual patient data. Clinical Neurophysiology, 2016, 127, 2684-2691.	1.5	74
11	Diagnostic Utility of Gold Coast Criteria in <scp>Amyotrophic Lateral Sclerosis</scp> . Annals of Neurology, 2021, 89, 979-986.	5.3	68
12	Imbalance of cortical facilitatory and inhibitory circuits underlies hyperexcitability in ALS. Neurology, 2018, 91, e1669-e1676.	1.1	67
13	Riluzole exerts transient modulating effects on cortical and axonal hyperexcitability in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 580-588.	1.7	58
14	Utility of threshold tracking transcranial magnetic stimulation in ALS. Clinical Neurophysiology Practice, 2018, 3, 164-172.	1.4	51
15	Split-hand plus sign in ALS: Differential involvement of the flexor pollicis longus and intrinsic hand muscles. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 315-318.	1.7	46
16	Diagnostic criteria in amyotrophic lateral sclerosis. Neurology, 2016, 87, 684-690.	1.1	46
17	Cortical hyperexcitability evolves with disease progression in ALS. Annals of Clinical and Translational Neurology, 2020, 7, 733-741.	3.7	45
18	ALS pathophysiology: Insights from the split-hand phenomenon. Clinical Neurophysiology, 2014, 125, 186-193.	1.5	44

Parvathi Menon

#	Article	IF	CITATIONS
19	ALS is a multistep process in South Korean, Japanese, and Australian patients. Neurology, 2020, 94, e1657-e1663.	1.1	39
20	The evolution of motor cortical dysfunction in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2017, 128, 1075-1082.	1.5	34
21	Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ Open, 2021, 11, e041479.	1.9	33
22	Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 85-92.	1.7	32
23	Physiological Processes Underlying Short Interval Intracortical Facilitation in the Human Motor Cortex. Frontiers in Neuroscience, 2018, 12, 240.	2.8	31
24	Cortical hyperexcitability and the split-hand plus phenomenon: Pathophysiological insights in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 250-256.	1.7	27
25	Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 389-396.	1.7	23
26	Physiological processes influencing motor-evoked potential duration with voluntary contraction. Journal of Neurophysiology, 2017, 117, 1156-1162.	1.8	23
27	Cortical excitability differences in hand muscles follow a splitâ€hand pattern in healthy controls. Muscle and Nerve, 2014, 49, 836-844.	2.2	22
28	Regional motor cortex dysfunction in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 1373-1382.	3.7	19
29	Amyotrophic lateral sclerosis diagnostic index. Neurology, 2019, 92, e536-e547.	1.1	17
30	Cortical excitability varies across different muscles. Journal of Neurophysiology, 2018, 120, 1397-1403.	1.8	14
31	Appearance, phenomenology and diagnostic utility of the split hand in amyotrophic lateral sclerosis. Neurodegenerative Disease Management, 2011, 1, 457-462.	2.2	12
32	Pathophysiological associations of transcallosal dysfunction in ALS. European Journal of Neurology, 2021, 28, 1172-1180.	3.3	12
33	Association of Cortical Hyperexcitability and Cognitive Impairment in Patients With Amyotrophic Lateral Sclerosis. Neurology, 2021, 96, e2090-e2097.	1.1	12
34	Motor cortical function and the precision grip. Physiological Reports, 2014, 2, e12120.	1.7	9
35	Hyperpolarization-activated cyclic-nucleotide-gated channels potentially modulate axonal excitability at different thresholds. Journal of Neurophysiology, 2017, 118, 3044-3050.	1.8	9
36	Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis. Journal of Visualized Experiments, 2014, , .	0.3	7

Parvathi Menon

#	Article	IF	CITATIONS
37	Split-hand index: A diagnostic and prognostic marker in amyotrophic lateral sclerosis across varying regions of onset. Clinical Neurophysiology, 2021, 132, 2130-2135.	1.5	7
38	Utility of Transcranial Magnetic Simulation in Studying Upper Motor Neuron Dysfunction in Amyotrophic Lateral Sclerosis. Brain Sciences, 2021, 11, 906.	2.3	4
39	Abnormalities of neuromuscular transmission in patients with Miller–Fisher syndrome. Journal of Clinical Neuroscience, 2012, 19, 1599-1601.	1.5	3
40	The Upper Motor Neuron—Improved Knowledge from ALS and Related Clinical Disorders. Brain Sciences, 2021, 11, 958.	2.3	3
41	Imbalance in cortical inhibition-excitation networks underlies als. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, e1.14-e1.	1.9	1
42	Isolated nerve plasmacytoma in a patient previously in systemic myeloma remission. Muscle and Nerve, 2017, 55, E27-E28.	2.2	0
43	Cortical hyperexcitability may contribute to disease spread in als. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, e1.16-e1.	1.9	0