
Guangxue Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-Dimensional Metal–Organic Framework with Wide Channels and Responsive Turn-On Fluorescence for the Chemical Sensing of Volatile Organic Compounds. Journal of the American Chemical Society, 2014, 136, 7241-7244.	6.6	593
2	Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights. Accounts of Chemical Research, 2018, 51, 1404-1414.	7.6	506
3	Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews, 2020, 49, 8179-8234.	18.7	397
4	Mitochondriaâ€Targeted Cancer Therapy Using a Lightâ€Up Probe with Aggregationâ€Inducedâ€Emission Characteristics. Angewandte Chemie - International Edition, 2014, 53, 14225-14229.	7.2	361
5	Precise Twoâ€Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregationâ€Induced Emission Characteristics. Advanced Materials, 2017, 29, 1701076.	11.1	258
6	Ultrabright Organic Dots with Aggregationâ€Induced Emission Characteristics for Realâ€Time Twoâ€Photon Intravital Vasculature Imaging. Advanced Materials, 2013, 25, 6083-6088.	11.1	255
7	Recent advances of AIE light-up probes for photodynamic therapy. Chemical Science, 2021, 12, 6488-6506.	3.7	224
8	Biocompatible Nanoparticles Based on Diketoâ€Pyrroloâ€Pyrrole (DPP) with Aggregationâ€Induced Red/NIR Emission for In Vivo Twoâ€Photon Fluorescence Imaging. Advanced Functional Materials, 2015, 25, 2857-2866.	7.8	213
9	Bright and Photostable Organic Fluorescent Dots with Aggregationâ€Induced Emission Characteristics for Noninvasive Longâ€Term Cell Imaging. Advanced Functional Materials, 2014, 24, 635-643.	7.8	210
10	Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Chemical Communications, 2014, 50, 8757.	2.2	185
11	A fluorescent light-up probe with "AIE + ESIPT―characteristics for specific detection of lysosomal esterase. Journal of Materials Chemistry B, 2014, 2, 3438-3442.	2.9	185
12	Image-guided combination chemotherapy and photodynamic therapy using a mitochondria-targeted molecular probe with aggregation-induced emission characteristics. Chemical Science, 2015, 6, 4580-4586.	3.7	182
13	A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria. Chemical Communications, 2015, 51, 12490-12493.	2.2	166
14	Multifunctional Conjugated Polymer Nanoparticles for Imageâ€Guided Photodynamic and Photothermal Therapy. Small, 2017, 13, 1602807.	5.2	147
15	Flexible Asymmetric Supercapacitor Based on Structureâ€Optimized Mn ₃ O ₄ /Reduced Graphene Oxide Nanohybrid Paper with High Energy and Power Density. Advanced Functional Materials, 2015, 25, 7291-7299.	7.8	146
16	Functionality and versatility of aggregation-induced emission luminogens. Applied Physics Reviews, 2017, 4, .	5.5	138
17	A Porphyrinâ€Based Conjugated Polymer for Highly Efficient In Vitro and In Vivo Photothermal Therapy. Small, 2016, 12, 6243-6254.	5.2	137
18	Multifunctional AIEgens for Future Theranostics. Small, 2016, 12, 6528-6535.	5.2	130

#	Article	IF	CITATIONS
19	A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells. Journal of Materials Chemistry B, 2015, 3, 9168-9172.	2.9	115
20	Bright Farâ€Red/Nearâ€Infrared Conjugated Polymer Nanoparticles for In Vivo Bioimaging. Small, 2013, 9, 3093-3102.	5.2	106
21	A two-channel responsive fluorescent probe with AIE characteristics and its application for selective imaging of superoxide anions in living cells. Chemical Communications, 2017, 53, 1653-1656.	2.2	106
22	Far Red/Near-Infrared AIE Dots for Image-Guided Photodynamic Cancer Cell Ablation. ACS Applied Materials & Interfaces, 2016, 8, 21193-21200.	4.0	103
23	A fluorescent light-up probe with AIE characteristics for specific mitochondrial imaging to identify differentiating brown adipose cells. Chemical Communications, 2014, 50, 8312-8315.	2.2	100
24	A Photostable Far-Red/Near-Infrared Conjugated Polymer Photosensitizer with Aggregation-Induced Emission for Image-Guided Cancer Cell Ablation. Macromolecules, 2016, 49, 5017-5025.	2.2	100
25	Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking. Biomaterials, 2014, 35, 8669-8677.	5.7	96
26	Rational design of fluorescent light-up probes based on an AIE luminogen for targeted intracellular thiol imaging. Chemical Communications, 2014, 50, 295-297.	2.2	95
27	Highly efficient photosensitizers with aggregation-induced emission characteristics obtained through precise molecular design. Chemical Communications, 2017, 53, 8727-8730.	2.2	94
28	Artemisinin and AlEgen Conjugate for Mitochondria-Targeted and Image-Guided Chemo- and Photodynamic Cancer Cell Ablation. ACS Applied Materials & Interfaces, 2018, 10, 11546-11553.	4.0	93
29	Antibacterial Narrowâ€Bandâ€Gap Conjugated Oligoelectrolytes with High Photothermal Conversion Efficiency. Angewandte Chemie - International Edition, 2017, 56, 16063-16066.	7.2	92
30	Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy. Chemical Communications, 2016, 52, 2752-2755.	2.2	90
31	Effect of AIE Substituents on the Fluorescence of Tetraphenylethene-Containing BODIPY Derivatives. ACS Applied Materials & Interfaces, 2015, 7, 15168-15176.	4.0	89
32	Mechanismâ€Guided Design and Synthesis of a Mitochondriaâ€Targeting Artemisinin Analogue with Enhanced Anticancer Activity. Angewandte Chemie - International Edition, 2016, 55, 13770-13774.	7.2	89
33	Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization. ACS Applied Materials & Interfaces, 2015, 7, 14965-14974.	4.0	86
34	Fluorescence bioimaging with conjugated polyelectrolytes. Nanoscale, 2012, 4, 6150.	2.8	85
35	A Multifunctional Probe with Aggregationâ€Induced Emission Characteristics for Selective Fluorescence Imaging and Photodynamic Killing of Bacteria Over Mammalian Cells. Advanced Healthcare Materials, 2015, 4, 659-663.	3.9	85
36	Biocompatible Red Fluorescent Organic Nanoparticles with Tunable Size and Aggregationâ€Induced Emission for Evaluation of Blood–Brain Barrier Damage. Advanced Materials, 2016, 28, 8760-8765.	11.1	80

#	Article	IF	CITATIONS
37	NIRâ€II Excitable Conjugated Polymer Dots with Bright NIRâ€I Emission for Deep In Vivo Twoâ€Photon Brain Imaging Through Intact Skull. Advanced Functional Materials, 2019, 29, 1808365.	7.8	80
38	Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement. Journal of Materials Chemistry B, 2016, 4, 4690-4695.	2.9	77
39	Structureâ€Dependent <i>cis</i> / <i>trans</i> Isomerization of Tetraphenylethene Derivatives: Consequences for Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2016, 55, 6192-6196.	7.2	75
40	Cellular and Mitochondrial Dualâ€Targeted Organic Dots with Aggregationâ€Induced Emission Characteristics for Imageâ€Guided Photodynamic Therapy. Advanced Healthcare Materials, 2015, 4, 2667-2676.	3.9	74
41	Siloleâ€Based Red Fluorescent Organic Dots for Bright Twoâ€Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging. Small, 2016, 12, 782-792.	5.2	74
42	Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells. Journal of Materials Chemistry B, 2014, 2, 231-238.	2.9	69
43	A fluorescent light-up nanoparticle probe with aggregation-induced emission characteristics and tumor-acidity responsiveness for targeted imaging and selective suppression of cancer cells. Materials Horizons, 2015, 2, 100-105.	6.4	68
44	Cationization-Enhanced Type I and Type II ROS Generation for Photodynamic Treatment of Drug-Resistant Bacteria. ACS Nano, 2022, 16, 9130-9141.	7.3	68
45	Cationization to boost both type I and type II ROS generation for photodynamic therapy. Biomaterials, 2022, 280, 121255.	5.7	67
46	A Cell Apoptosis Probe Based on Fluorogen with Aggregation Induced Emission Characteristics. ACS Applied Materials & Interfaces, 2015, 7, 4875-4882.	4.0	65
47	Porphyrin-Based Two-Dimensional Layered Metal–Organic Framework with Sono-/Photocatalytic Activity for Water Decontamination. ACS Nano, 2022, 16, 1346-1357.	7.3	64
48	Reversible photoswitching conjugated polymer nanoparticles for cell and ex vivo tumor imaging. Nanoscale, 2014, 6, 4141-4147.	2.8	55
49	Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells. Polymer Chemistry, 2013, 4, 4326.	1.9	54
50	Real-Time Specific Light-Up Sensing of Transferrin Receptor: Image-Guided Photodynamic Ablation of Cancer Cells through Controlled Cytomembrane Disintegration. Analytical Chemistry, 2016, 88, 4841-4848.	3.2	53
51	AlEgen based light-up probes for live cell imaging. Science China Chemistry, 2016, 59, 53-61.	4.2	50
52	Bright Singleâ€Chain Conjugated Polymer Dots Embedded Nanoparticles for Longâ€Term Cell Tracing and Imaging. Small, 2014, 10, 1212-1219.	5.2	49
53	Narrow band gap conjugated polyelectrolytes for photothermal killing of bacteria. Journal of Materials Chemistry B, 2015, 3, 7340-7346.	2.9	45
54	Fluorogen–Peptide Conjugates with Tunable Aggregation-Induced Emission Characteristics for Bioprobe Design. ACS Applied Materials & Interfaces, 2014, 6, 14302-14310.	4.0	42

#	Article	IF	CITATIONS
55	Smart Metal–Organic Frameworks with Reversible Luminescence/Magnetic Switch Behavior for HCl Vapor Detection. Advanced Functional Materials, 2021, 31, 2106925.	7.8	42
56	Ultrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging. Advanced Science, 2017, 4, 1600407.	5.6	40
57	Aggregation-Induced Emission Probe for Specific Turn-On Quantification of Soluble Transferrin Receptor: An Important Disease Marker for Iron Deficiency Anemia and Kidney Diseases. Analytical Chemistry, 2018, 90, 1154-1160.	3.2	38
58	Specific Light-Up Probe with Aggregation-Induced Emission for Facile Detection of Chymase. Analytical Chemistry, 2016, 88, 9111-9117.	3.2	37
59	Zinc(II)-Tetradentate-Coordinated Probe with Aggregation-Induced Emission Characteristics for Selective Imaging and Photoinactivation of Bacteria. ACS Omega, 2017, 2, 546-553.	1.6	37
60	Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imagingâ€Modality Transformable Characteristics for Improved Biological Applications**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
61	Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection. Biomaterials, 2018, 152, 77-85.	5.7	34
62	Polymeric nanorods with aggregation-induced emission characteristics for enhanced cancer targeting and imaging. Nanoscale, 2018, 10, 5869-5874.	2.8	32
63	Smart Tetraphenyletheneâ€Based Luminescent Metal–Organic Frameworks with Amideâ€Assisted Thermofluorochromics and Piezofluorochromics. Advanced Science, 2022, 9, e2200850.	5.6	31
64	Hyperbranched Conjugated Polyelectrolytes for Biological Sensing and Imaging. Macromolecular Rapid Communications, 2013, 34, 705-715.	2.0	28
65	Effective Therapy of Drugâ€Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide. Small, 2022, 18, e2200743.	5.2	27
66	Conjugated polymer microparticles for selective cancer cell image-guided photothermal therapy. Journal of Materials Chemistry B, 2015, 3, 1135-1141.	2.9	26
67	Bright Quantumâ€Dotâ€Sized Singleâ€Chain Conjugated Polyelectrolyte Nanoparticles: Synthesis, Characterization and Application for Specific Extracellular Labeling and Imaging. Small, 2014, 10, 3110-3118.	5.2	23
68	Size Optimization of Organic Nanoparticles with Aggregationâ€Induced Emission Characteristics for Improved ROS Generation and Photodynamic Cancer Cell Ablation. Small, 2022, 18, .	5.2	21
69	Cell imaging using red fluorescent light-up probes based on an environment-sensitive fluorogen with intramolecular charge transfer characteristics. Chemical Communications, 2014, 50, 9497.	2.2	19
70	Structureâ€Dependent <i>cis</i> / <i>trans</i> Isomerization of Tetraphenylethene Derivatives: Consequences for Aggregationâ€Induced Emission. Angewandte Chemie, 2016, 128, 6300-6304.	1.6	19
71	Organic nanoparticles with ultrahigh quantum yield and aggregation-induced emission characteristics for cellular imaging and real-time two-photon lung vasculature imaging. Journal of Materials Chemistry B, 2018, 6, 2630-2636.	2.9	19
72	A Facile Strategy toward Conjugated Polyelectrolyte with Oligopeptide as Pendants for Biological Applications. ACS Applied Materials & Interfaces, 2013, 5, 4511-4515.	4.0	18

#	Article	IF	CITATIONS
73	Boosting Photothermal Theranostics via TICT and Molecular Motions for Photohyperthermia Therapy of Muscleâ€Invasive Bladder Cancer. Advanced Healthcare Materials, 2021, 10, e2101063.	3.9	15
74	Visualize Embryogenesis and Cell Fate Using Fluorescent Probes with Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2019, 11, 3737-3744.	4.0	14
75	Mechanismâ€Guided Design and Synthesis of a Mitochondriaâ€Targeting Artemisinin Analogue with Enhanced Anticancer Activity. Angewandte Chemie, 2016, 128, 13974-13978.	1.6	13
76	Organic Mitoprobes based on Fluorogens with Aggregationâ€Induced Emission. Israel Journal of Chemistry, 2018, 58, 860-873.	1.0	13
77	Real-time naked-eye multiplex detection of toxins and bacteria using AlEgens with the assistance of graphene oxide. Faraday Discussions, 2017, 196, 363-375.	1.6	11
78	Modulating Cell Specificity and Subcellular Localization by Molecular Charges and Lipophilicity. Chemistry of Materials, 2020, 32, 10383-10393.	3.2	10
79	Antibacterial Narrowâ€Bandâ€Gap Conjugated Oligoelectrolytes with High Photothermal Conversion Efficiency. Angewandte Chemie, 2017, 129, 16279-16282.	1.6	9
80	Highly sensitive light-up near-infrared fluorescent probe for detection and imaging of β-glucuronidase in human serum, living cells and tumor-bearing mice. Science China Materials, 2022, 65, 836-844.	3.5	6
81	Fluorescence Imaging: Bright Far-Red/Near-Infrared Conjugated Polymer Nanoparticles for In Vivo Bioimaging (Small 18/2013). Small, 2013, 9, 3092-3092.	5.2	5
82	Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imagingâ€Modality Transformable Characteristics for Improved Biological Applications**. Angewandte Chemie, 2022, 134, .	1.6	5
83	Organometallic Conjugated Polyelectrolytes: Synthesis and Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 27-36.	1.9	3
84	Polymer Nanoparticles: Multifunctional Conjugated Polymer Nanoparticles for Imageâ€Guided Photodynamic and Photothermal Therapy (Small 3/2017). Small, 2017, 13, .	5.2	2
85	Bioimaging: NIRâ€I Excitable Conjugated Polymer Dots with Bright NIRâ€I Emission for Deep In Vivo Twoâ€Photon Brain Imaging Through Intact Skull (Adv. Funct. Mater. 15/2019). Advanced Functional Materials, 2019, 29, 1970095.	7.8	2
86	Photodynamic Therapy: A Multifunctional Probe with Aggregationâ€Induced Emission Characteristics for Selective Fluorescence Imaging and Photodynamic Killing of Bacteria Over Mammalian Cells (Adv.) Tj ETQq0 () 03 :g BT /C)verlock 10 T

87Fast and High-Throughput Evaluation of Photodynamic Effect by Monitoring Specific Protein
Oxidation with MALDI-TOF Mass Spectrometry. Analytical Chemistry, 2020, 92, 12176-12184.3.2