Elizabeth Jamie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261506/publications.pdf

Version: 2024-02-01

1683934 1719901 9 86 5 7 citations h-index g-index papers 9 9 9 105 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Capillary Emptying and Short-Range Wetting. Physical Review Letters, 2012, 108, 246101.	2.9	22
2	Spinodal decomposition of a confined colloid-polymer system. Journal of Chemical Physics, 2012, 137, 204902.	1.2	20
3	Probing the critical behavior of colloidal interfaces by gravity. Soft Matter, 2010, 6, 250-255.	1.2	13
4	Thermal capillary waves in colloid–polymer mixtures in water. Journal of Physics Condensed Matter, 2008, 20, 494231.	0.7	12
5	Surface Effects on the Demixing of Colloid–Polymer Systems. Journal of Physical Chemistry B, 2011, 115, 13168-13174.	1.2	8
6	Tuning the demixing of colloid–polymer systems through the dispersing solvent. Journal of Physics Condensed Matter, 2011, 23, 194115.	0.7	5
7	Fluid–fluid demixing of off-critical colloid–polymer systems confined between parallel plates. Journal of Physics Condensed Matter, 2012, 24, 284120.	0.7	5
8	Sedimentation–diffusion dynamics in colloid–polymer mixtures. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P11008.	0.9	1
9	A microstructural investigation of an industrial attractive gel at pressure and temperature. Soft Matter, 2022, , .	1.2	0