

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261444/publications.pdf Version: 2024-02-01

ΟΠΙΧΑΝΤΙ

#	Article	IF	CITATIONS
1	Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4, 180-186.	19.8	2,101
2	Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3, 739-746.	19.8	767
3	Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries. CheM, 2018, 4, 1877-1892.	5.8	628
4	Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5, 561-568.	19.8	526
5	High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nature Energy, 2019, 4, 551-559.	19.8	492
6	High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes. Advanced Energy Materials, 2015, 5, 1402290.	10.2	483
7	Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 2019, 3, 1094-1105.	11.7	358
8	High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 896-902.	8.8	302
9	Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries. Joule, 2018, 2, 110-124.	11.7	280
10	A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2059-2067.	8.8	257
11	Li ⁺ -Desolvation Dictating Lithium-Ion Battery's Low-Temperature Performances. ACS Applied Materials & Interfaces, 2017, 9, 42761-42768.	4.0	200
12	Highâ€Performance Silicon Anodes Enabled By Nonflammable Localized Highâ€Concentration Electrolytes. Advanced Energy Materials, 2019, 9, 1900784.	10.2	175
13	Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF ₆ and Cyclic Carbonate Additives. ACS Energy Letters, 2018, 3, 14-19.	8.8	161
14	Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18826-18835.	4.0	150
15	Dendriteâ€Free and Performanceâ€Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives. Advanced Energy Materials, 2018, 8, 1703022.	10.2	123
16	Highâ€Power Lithium Metal Batteries Enabled by Highâ€Concentration Acetonitrileâ€Based Electrolytes with Vinylene Carbonate Additive. Advanced Functional Materials, 2020, 30, 2001285.	7.8	121
17	Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 2469-2479.	4.0	110
18	Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1901764.	10.2	108

QIUYAN LI

#	Article	IF	CITATIONS
19	A Micrometerâ€6ized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon. Advanced Materials, 2021, 33, e2103095.	11.1	99
20	Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes. Nano Letters, 2017, 17, 1602-1609.	4.5	91
21	Enabling High-Energy-Density Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23094-23102.	4.0	67
22	Polymerâ€inâ€â€œQuasiâ€ionic Liquid―Electrolytes for Highâ€Voltage Lithium Metal Batteries. Advanced Ener Materials, 2019, 9, 1902108.	gy _{10.2}	65
23	Enhanced Stability of Lithium Metal Anode by using a 3D Porous Nickel Substrate. ChemElectroChem, 2018, 5, 761-769.	1.7	58
24	High performance Li-ion sulfur batteries enabled by intercalation chemistry. Chemical Communications, 2015, 51, 13454-13457.	2.2	55
25	Electrode Edge Effects and the Failure Mechanism of Lithiumâ€Metal Batteries. ChemSusChem, 2018, 11, 3821-3828.	3.6	35
26	Toward the Practical Use of Cobalt-Free Lithium-Ion Batteries by an Advanced Ether-Based Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 44339-44347.	4.0	24
27	To Pave the Way for Large-Scale Electrode Processing of Moisture-Sensitive Ni-Rich Cathodes. Journal of the Electrochemical Society, 2022, 169, 020521.	1.3	15