Yury S Tveryanovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261342/publications.pdf

Version: 2024-02-01

85 papers 827

16 h-index 24 g-index

85 all docs 85 docs citations

85 times ranked 554 citing authors

#	Article	IF	CITATIONS
1	Increasing the Plasticity of Chalcogenide Glasses in the System Ag ₂ Se–Sb ₂ Se ₃ –GeSe ₂ . Chemistry of Materials, 2022, 34, 2743-2751.	3.2	4
2	Superionic nanolayered structure based on amorphous Ag2Se. Journal of Physics and Chemistry of Solids, 2021, 148, 109731.	1.9	1
3	Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima. International Journal of Molecular Sciences, 2021, 22, 3029.	1.8	9
4	An assessment of water placement algorithms in quantum mechanics/molecular mechanics modeling: the case of rhodopsins' first spectral absorption band maxima. Physical Chemistry Chemical Physics, 2020, 22, 18114-18123.	1.3	12
5	Stabilization of high-temperature Ag2Se phase at room temperature during the crystallization of an amorphous film. Thin Solid Films, 2020, 709, 138187.	0.8	2
6	Fabrication of stoichiometric oriented Ag2Se thin film by laser ablation. Thin Solid Films, 2018, 666, 172-176.	0.8	14
7	Investigation of structure of GeS1.35 glasses with the use of isotopically enriched germanium and Raman scattering spectroscopy. Journal of Non-Crystalline Solids, 2017, 457, 164-168.	1.5	2
8	LASER-INDUCED DECOMPOSITION OF [CO(NH3)5 (CN5 O2)](CLO4)2. International Journal of Energetic Materials and Chemical Propulsion, 2016, 15, 113-122.	0.2	2
9	Nanolayered solid electrolyte (GeSe2)30(Sb2Se3)30(AgI)40/AgI: A new hypothesis for the conductivity mechanism in layered AgI. Solid State Ionics, 2016, 294, 82-89.	1.3	9
10	Temperature hysteresis of AgI phase transition in AgI–chalcogenide glass nanolayered films. Glass Physics and Chemistry, 2016, 42, 172-176.	0.2	5
11	Agl thin films prepared by laser ablation. Solid State Ionics, 2016, 297, 64-67.	1.3	10
12	Laser-induced processes in chemistry and material sciences. Russian Chemical Reviews, 2015, 84, E01-E01.	2.5	2
13	Preparation of films of vitreous solid electrolyte (GeSe2)30(Sb2Se3)30(AgI)40 using laser ablation method. Glass Physics and Chemistry, 2015, 41, 440-442.	0.2	4
14	Control of phase composition of silver iodide by mechanoactivation. Glass Physics and Chemistry, 2015, 41, 637-642.	0.2	1
15	Mechanism of Formation of Copper(II) Chloro Complexes Revealed by Transient Absorption Spectroscopy and DFT/TDDFT Calculations. Journal of Physical Chemistry B, 2015, 119, 8754-8763.	1.2	14
16	Decomposition of cobalt(III) nitrotetrazolato amminates under the action of laser light. Russian Journal of Applied Chemistry, 2015, 88, 226-231.	0.1	10
17	Laser-induced copper deposition from aqueous and aqueous–organic solutions: state of the art and prospects of research. Russian Chemical Reviews, 2015, 84, 1059-1075.	2.5	41
18	Preparation and ion conductivity of composite films AgI-ZnO. , 2015, , .		0

#	Article	IF	CITATIONS
19	Photochemistry of copper(II) chlorocomplexes in acetonitrile: Trapping the ligand-to-metal charge transfer excited state relaxations pathways. Chemical Physics Letters, 2014, 615, 105-110.	1.2	46
20	Vitreous films of Ga6Ge17S43 composition as a biochip substrate. Glass Physics and Chemistry, 2014, 40, 467-469.	0.2	2
21	As39S6 films as protein-selective two-dimensional arrays for biochips. Glass Physics and Chemistry, 2014, 40, 470-471.	0.2	1
22	Nanocomposites based on silver iodide and aluminum oxide. Glass Physics and Chemistry, 2013, 39, 94-99.	0.2	2
23	Temperature annealing of radiation defects in xCu2Se-(1 â^' x)As2Se3 glasses: Dependence on composition. Glass Physics and Chemistry, 2013, 39, 57-63.	0.2	1
24	Sorbitol as an efficient reducing agent for laser-induced copper deposition. Applied Surface Science, 2012, 259, 55-58.	3.1	26
25	Mechanical modification of Î ² -Agl nanocrystals. Crystallography Reports, 2012, 57, 948-954.	0.1	11
26	Production of nanodispersed materials and thin films by laser ablation techniques in liquid and in vacuum. Russian Chemical Reviews, 2012, 81, 1091-1116.	2.5	4
27	Side reactions during laser-induced deposition of copper from aqueous solutions of Cull complexes. Russian Chemical Bulletin, 2012, 61, 1041-1047.	0.4	14
28	Linear-cavity fiber laser in nearly single-frequency operation using Faraday rotator mirror. Laser Physics, 2012, 22, 437-440.	0.6	4
29	Structural changes in silver iodide upon mechanochemical treatment. Glass Physics and Chemistry, 2012, 38, 155-161.	0.2	4
30	Laser-induced chemical liquid phase deposition of metals: chemical reactions in solution and activation of dielectric surfaces. Russian Chemical Reviews, 2011, 80, 869-882.	2.5	32
31	Optimization of the solution composition for laser-induced chemical liquid phase deposition of copper. Russian Chemical Bulletin, 2011, 60, 1564-1570.	0.4	13
32	Composition of the gas phase formed upon laser-induced copper deposition from solutions. Mendeleev Communications, 2011, 21, 34-35.	0.6	20
33	Single-longitudinal-mode linear-cavity fiber laser using multiple subring-cavities. Laser Physics, 2010, 20, 1608-1611.	0.6	13
34	Linear-cavity fiber laser using subring-cavity incorporated saturable absorber for single-frequency operation. Laser Physics, 2010, 20, 1744-1746.	0.6	13
35	Composition investigation of lithium niobate crystals and its influence on the optical damage resistance. Russian Journal of General Chemistry, 2010, 80, 1543-1549.	0.3	2
36	Effect of defects of the domain structure on the optical properties of ferroelectric crystals. Glass Physics and Chemistry, 2010, 36, 10-16.	0.2	0

#	Article	IF	Citations
37	Ionic conductivity of (As2Se3)1 \hat{a} x (AgHal) x (Hal = I, Br) nanocomposites. Glass Physics and Chemistry, 2010, 36, 455-462.	0.2	5
38	Polycrystalline CuIn3Se5 thin film photoabsorber deposited by the pulsed laser deposition technique. Proceedings of the Estonian Academy of Sciences, 2009, 58, 24.	0.9	5
39	Investigation of lithium niobate composition by optical spectroscopy methods. Russian Chemical Bulletin, 2009, 58, 2228-2232.	0.4	16
40	Er3+ as glass structure modifier of Ga–Ge–S chalcogenide system. Applied Physics A: Materials Science and Processing, 2009, 96, 887-891.	1.1	16
41	Photoinduced magnetization of glass-ceramic alloys in the Cu-As-Cr-Se system. Glass Physics and Chemistry, 2009, 35, 468-474.	0.2	O
42	Preparation and investigation of 0.7Agl $\hat{A}\cdot$ 0.3ZnO nanocomposite films. Glass Physics and Chemistry, 2009, 35, 668-672.	0.2	3
43	Preparation of CuCr2Se4/ZnSe layered films on glass substrates by laser ablation. Glass Physics and Chemistry, 2008, 34, 146-149.	0.2	O
44	Ion-conducting multilayer films based on alternating nanolayers Ag3SI, AgI and Ag2S, AgI. Glass Physics and Chemistry, 2008, 34, 150.	0.2	11
45	Pump slope-improved fiber-ring laser by recycling the residual pumping power. Laser Physics, 2008, 18, 1040-1043.	0.6	1
46	Erbium-mediated photoconductivity of Ga–Ge–S–Se : Er3+chalcogenide glasses. Journal Physics D Applied Physics, 2008, 41, 175110.): 1.3	4
47	<title>Absorption and photoluminescence of Ga-La-S:O and Ga-Ge-As-S glasses doped with rare-earth ions</title> ., 2007,,.		0
48	Laser-assisted metal deposition from CuSO4-based electrolyte solution. Laser Physics Letters, 2007, 4, 163-167.	0.6	19
49	CuCl2-based liquid electrolyte precursor for laser-induced metal deposition. Laser Physics Letters, 2007, 4, 242-246.	0.6	20
50	Specific optical and photoelectric properties of thin Culn3Se5 films synthesized by laser deposition. Semiconductors, 2007, 41, 1394-1397.	0.2	1
51	Laser-induced copper deposition on the surface of an oxide glass from an electrolyte solution. Glass Physics and Chemistry, 2007, 33, 209-213.	0.2	18
52	Effect of salt precursor on laser-assisted copper deposition. Applied Physics A: Materials Science and Processing, 2007, 89, 755-759.	1.1	23
53	Syntheses and magnetic properties of nanocrystalline CuCr2Se4. Journal of Non-Crystalline Solids, 2006, 352, 2885-2891.	1.5	6
54	CulnSe2 thin films deposited by UV laser ablation. Solar Energy Materials and Solar Cells, 2006, 90, 3624-3632.	3.0	28

#	Article	IF	CITATIONS
55	The influence of the preparation technique and thickness of As2Se3 · AgBr glass layers on the electrical conductivity. Glass Physics and Chemistry, 2006, 32, 214-217.	0.2	О
56	On the variation of the structure of nanocomposite solid electrolytes. Glass Physics and Chemistry, 2006, 32, 491-493.	0.2	1
57	Synthesis and characterization of nanocrystalline CuCr2Se4 particles. Materials Letters, 2006, 60, 2807-2809.	1.3	14
58	Electrical conductivity of glasses in the Ag-As-Se-Te system. Glass Physics and Chemistry, 2005, 31, 165-167.	0.2	4
59	Formation of CuCr2Se4 ferromagnetic spinel microcrystals in a chalcogenide glass matrix. Glass Physics and Chemistry, 2005, 31, 168-172.	0.2	1
60	Photoinduced transformations in Ga-Ge-S: Er films prepared by laser deposition. Glass Physics and Chemistry, 2005, 31, 173-176.	0.2	4
61	Effect of Light on the Magnetic Properties of Semiconductors. Glass Physics and Chemistry, 2005, 31, 563-582.	0.2	2
62	Magnetic Properties of Chalcogenide Glasses. Semiconductors and Semimetals, 2004, 79, 229-275.	0.4	1
63	Rare-Earth Doped Chalcogenide Glass. Semiconductors and Semimetals, 2004, , 169-207.	0.4	12
64	Electrical properties of glasses in the AgI-As2Te3 system. Glass Physics and Chemistry, 2004, 30, 519-522.	0.2	5
65	Formation of complex structural units and structure of some chalco-halide glasses. Journal of Non-Crystalline Solids, 2004, 333, 85-89.	1.5	27
66	Ion Conductivity and Sensors. Semiconductors and Semimetals, 2004, 80, 103-168.	0.4	8
67	Concentration Quenching of Luminescence of Rare-Earth lons in Chalcogenide Glasses. Glass Physics and Chemistry, 2003, 29, 166-168.	0.2	14
68	On the Possible Existence of Vitreous Solid Electrolytes with a Molten Cationic Sublattice. Glass Physics and Chemistry, 2003, 29, 137-139.	0.2	0
69	Formation of Radiation-Induced Defects in Glasses of the Copper–Arsenic–Selenium System. Glass Physics and Chemistry, 2003, 29, 160-165.	0.2	4
70	Resonant Optical Nonlinearity in Vitreous Semiconductors. Glass Physics and Chemistry, 2003, 29, 328-329.	0.2	2
71	Title is missing!. Glass Physics and Chemistry, 2003, 29, 428-430.	0.2	1
72	Up-conversion luminescence efficiency in Er-doped chalcogenide glasses. Journal of Non-Crystalline Solids, 2003, 326-327, 311-315.	1.5	16

#	Article	IF	CITATIONS
73	Deposition of Er 3+ doped chalcogenide glass films by excimer laser ablation. Journal of Non-Crystalline Solids, 2003, 326-327, 316-319.	1.5	19
74	Non-radiative energy transfer from Er 3+ ions to the electronic states of the chalcogenide glass matrix. Journal of Non-Crystalline Solids, 2003, 326-327, 320-324.	1.5	9
75	Er3+ to glass matrix energy transfer in Ga–Ge–S:Er3+ system. Journal of Non-Crystalline Solids, 2002, 298, 7-14.	1.5	54
76	<title>Glasses of the Ga<formula><inf><roman>2</roman></inf></formula>S<formula><inf><roman>3</roman></inf></formula>-Ge system doped with rare-earth ions (Nd<formula><sup><roman>3+</roman></sup></formula>,Er<formula><sup><roman>3+</roman></sup></formula></td><td></td><td>a><inf><roma
12</td></tr><tr><td>77</td><td>as active optical materials < /title>., 2001, 4429, 80. Up-conversion fluorescence in Er-doped chalcogenide glasses based on GeS2–Ga2S3 system. Journal of Non-Crystalline Solids, 2001, 286, 89-92.</td><td>1.5</td><td>38</td></tr><tr><td>78</td><td>Glass Formation and Luminescence of Glasses in the Ga2S3–GeS2–Nd2S3System. Glass Physics and Chemistry, 2001, 27, 209-213.</td><td>0.2</td><td>3</td></tr><tr><td>79</td><td>Title is missing!. Glass Physics and Chemistry, 2001, 27, 406-408.</td><td>0.2</td><td>1</td></tr><tr><td>80</td><td>Magnetic Susceptibility and Local Structure of the Glasses Ga2S3(As2S3, PbS)–GeS2–MnS. Journal of Solid State Chemistry, 2000, 152, 388-391.</td><td>1.4</td><td>2</td></tr><tr><td>81</td><td>Smeared first-order phase transition in chalcogenide melts. Journal of Non-Crystalline Solids, 1999, 256-257, 78-82.</td><td>1.5</td><td>3</td></tr><tr><td>82</td><td>Glass-forming ability and cationic transport in gallium containing chalcohalide glasses. Journal of Non-Crystalline Solids, 1999, 256-257, 237-241.</td><td>1.5</td><td>28</td></tr><tr><td>83</td><td>The environment of Nd3+, Sm3+, Yb3+ in chalcogenide glasses containing gallium and germanium.
Journal of Non-Crystalline Solids, 1999, 256-257, 95-99.</td><td>1.5</td><td>6</td></tr><tr><td>84</td><td>Magnetochemical investigation of the second coordination sphere of transition metals in glasses. Journal of Non-Crystalline Solids, 1999, 256-257, 100-104.</td><td>1.5</td><td>5</td></tr><tr><td>85</td><td>On the doping of chalcogenide glassy semiconductors. Journal of Non-Crystalline Solids, 1987, 90, 405-412.</td><td>1.5</td><td>5</td></tr></tbody></table></title>		