
Yury S Tveryanovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Er3+ to glass matrix energy transfer in Ga–Ge–S:Er3+ system. Journal of Non-Crystalline Solids, 2002, 298, 7-14.	1.5	54
2	Photochemistry of copper(II) chlorocomplexes in acetonitrile: Trapping the ligand-to-metal charge transfer excited state relaxations pathways. Chemical Physics Letters, 2014, 615, 105-110.	1.2	46
3	Laser-induced copper deposition from aqueous and aqueous–organic solutions: state of the art and prospects of research. Russian Chemical Reviews, 2015, 84, 1059-1075.	2.5	41
4	Up-conversion fluorescence in Er-doped chalcogenide glasses based on GeS2–Ga2S3 system. Journal of Non-Crystalline Solids, 2001, 286, 89-92.	1.5	38
5	Laser-induced chemical liquid phase deposition of metals: chemical reactions in solution and activation of dielectric surfaces. Russian Chemical Reviews, 2011, 80, 869-882.	2.5	32
6	Glass-forming ability and cationic transport in gallium containing chalcohalide glasses. Journal of Non-Crystalline Solids, 1999, 256-257, 237-241.	1.5	28
7	CulnSe2 thin films deposited by UV laser ablation. Solar Energy Materials and Solar Cells, 2006, 90, 3624-3632.	3.0	28
8	Formation of complex structural units and structure of some chalco-halide glasses. Journal of Non-Crystalline Solids, 2004, 333, 85-89.	1.5	27
9	Sorbitol as an efficient reducing agent for laser-induced copper deposition. Applied Surface Science, 2012, 259, 55-58.	3.1	26
10	Effect of salt precursor on laser-assisted copper deposition. Applied Physics A: Materials Science and Processing, 2007, 89, 755-759.	1.1	23
11	CuCl2-based liquid electrolyte precursor for laser-induced metal deposition. Laser Physics Letters, 2007, 4, 242-246.	0.6	20
12	Composition of the gas phase formed upon laser-induced copper deposition from solutions. Mendeleev Communications, 2011, 21, 34-35.	0.6	20
13	Deposition of Er 3+ doped chalcogenide glass films by excimer laser ablation. Journal of Non-Crystalline Solids, 2003, 326-327, 316-319.	1.5	19
14	Laser-assisted metal deposition from CuSO4-based electrolyte solution. Laser Physics Letters, 2007, 4, 163-167.	0.6	19
15	Laser-induced copper deposition on the surface of an oxide glass from an electrolyte solution. Glass Physics and Chemistry, 2007, 33, 209-213.	0.2	18
16	Up-conversion luminescence efficiency in Er-doped chalcogenide glasses. Journal of Non-Crystalline Solids, 2003, 326-327, 311-315.	1.5	16
17	Investigation of lithium niobate composition by optical spectroscopy methods. Russian Chemical Bulletin, 2009, 58, 2228-2232.	0.4	16
18	Er3+ as glass structure modifier of Ga–Ge–S chalcogenide system. Applied Physics A: Materials Science and Processing, 2009, 96, 887-891.	1.1	16

#	Article	IF	CITATIONS
19	Concentration Quenching of Luminescence of Rare-Earth lons in Chalcogenide Glasses. Glass Physics and Chemistry, 2003, 29, 166-168.	0.2	14
20	Synthesis and characterization of nanocrystalline CuCr2Se4 particles. Materials Letters, 2006, 60, 2807-2809.	1.3	14
21	Side reactions during laser-induced deposition of copper from aqueous solutions of Cull complexes. Russian Chemical Bulletin, 2012, 61, 1041-1047.	0.4	14
22	Mechanism of Formation of Copper(II) Chloro Complexes Revealed by Transient Absorption Spectroscopy and DFT/TDDFT Calculations. Journal of Physical Chemistry B, 2015, 119, 8754-8763.	1.2	14
23	Fabrication of stoichiometric oriented Ag2Se thin film by laser ablation. Thin Solid Films, 2018, 666, 172-176.	0.8	14
24	Single-longitudinal-mode linear-cavity fiber laser using multiple subring-cavities. Laser Physics, 2010, 20, 1608-1611.	0.6	13
25	Linear-cavity fiber laser using subring-cavity incorporated saturable absorber for single-frequency operation. Laser Physics, 2010, 20, 1744-1746.	0.6	13
26	Optimization of the solution composition for laser-induced chemical liquid phase deposition of copper. Russian Chemical Bulletin, 2011, 60, 1564-1570.	0.4	13
27	<title>Glasses of the
Ga<formula><inf><roman>2</roman></inf></formula>S<formula><inf><roman>3</roman></inf></formula>-G
system doped with rare-earth ions
(Nd<formula><sup><roman>3+</roman></sup></formula>,Er<formula><sup><roman>3+</roman></sup></fo</td><td></td><td>a><inf><rom
12</td></tr><tr><td>28</td><td>as active optical materials circles ., 2001, 4429, 80.
Rare-Earth Doped Chalcogenide Glass. Semiconductors and Semimetals, 2004, , 169-207.</td><td>0.4</td><td>12</td></tr><tr><td>29</td><td>An assessment of water placement algorithms in quantum mechanics/molecular mechanics modeling:
the case of rhodopsins' first spectral absorption band maxima. Physical Chemistry Chemical Physics,
2020, 22, 18114-18123.</td><td>1.3</td><td>12</td></tr><tr><td>30</td><td>Ion-conducting multilayer films based on alternating nanolayers Ag3SI, AgI and Ag2S, AgI. Glass Physics and Chemistry, 2008, 34, 150.</td><td>0.2</td><td>11</td></tr><tr><td>31</td><td>Mechanical modification of Î<sup>2</sup>-AgI nanocrystals. Crystallography Reports, 2012, 57, 948-954.</td><td>0.1</td><td>11</td></tr><tr><td>32</td><td>Decomposition of cobalt(III) nitrotetrazolato amminates under the action of laser light. Russian
Journal of Applied Chemistry, 2015, 88, 226-231.</td><td>0.1</td><td>10</td></tr><tr><td>33</td><td>AgI thin films prepared by laser ablation. Solid State Ionics, 2016, 297, 64-67.</td><td>1.3</td><td>10</td></tr><tr><td>34</td><td>Non-radiative energy transfer from Er 3+ ions to the electronic states of the chalcogenide glass matrix. Journal of Non-Crystalline Solids, 2003, 326-327, 320-324.</td><td>1.5</td><td>9</td></tr><tr><td>35</td><td>Nanolayered solid electrolyte (GeSe2)30(Sb2Se3)30(Agl)40/Agl: A new hypothesis for the conductivity mechanism in layered Agl. Solid State Ionics, 2016, 294, 82-89.</td><td>1.3</td><td>9</td></tr><tr><td>36</td><td>Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the
Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima.
International Journal of Molecular Sciences, 2021, 22, 3029.</td><td>1.8</td><td>9</td></tr></tbody></table></title>		

#	Article	IF	CITATIONS
37	Ion Conductivity and Sensors. Semiconductors and Semimetals, 2004, 80, 103-168.	0.4	8
38	The environment of Nd3+, Sm3+, Yb3+ in chalcogenide glasses containing gallium and germanium. Journal of Non-Crystalline Solids, 1999, 256-257, 95-99.	1.5	6
39	Syntheses and magnetic properties of nanocrystalline CuCr2Se4. Journal of Non-Crystalline Solids, 2006, 352, 2885-2891.	1.5	6
40	On the doping of chalcogenide glassy semiconductors. Journal of Non-Crystalline Solids, 1987, 90, 405-412.	1.5	5
41	Magnetochemical investigation of the second coordination sphere of transition metals in glasses. Journal of Non-Crystalline Solids, 1999, 256-257, 100-104.	1.5	5
42	Electrical properties of glasses in the Agl-As2Te3 system. Glass Physics and Chemistry, 2004, 30, 519-522.	0.2	5
43	Polycrystalline CuIn3Se5 thin film photoabsorber deposited by the pulsed laser deposition technique. Proceedings of the Estonian Academy of Sciences, 2009, 58, 24.	0.9	5
44	lonic conductivity of (As2Se3)1 â^' x (AgHal) x (Hal = I, Br) nanocomposites. Glass Physics and Chemistry, 2010, 36, 455-462.	0.2	5
45	Temperature hysteresis of AgI phase transition in Agl–chalcogenide glass nanolayered films. Glass Physics and Chemistry, 2016, 42, 172-176.	0.2	5
46	Formation of Radiation-Induced Defects in Glasses of the Copper–Arsenic–Selenium System. Glass Physics and Chemistry, 2003, 29, 160-165.	0.2	4
47	Electrical conductivity of glasses in the Ag-As-Se-Te system. Glass Physics and Chemistry, 2005, 31, 165-167.	0.2	4
48	Photoinduced transformations in Ga-Ge-S : Er films prepared by laser deposition. Glass Physics and Chemistry, 2005, 31, 173-176.	0.2	4
49	Erbium-mediated photoconductivity of Ga–Ge–S–Se : Er3+chalcogenide glasses. Journal Physics D Applied Physics, 2008, 41, 175110.): 1.3	4
50	Production of nanodispersed materials and thin films by laser ablation techniques in liquid and in vacuum. Russian Chemical Reviews, 2012, 81, 1091-1116.	2.5	4
51	Linear-cavity fiber laser in nearly single-frequency operation using Faraday rotator mirror. Laser Physics, 2012, 22, 437-440.	0.6	4
52	Structural changes in silver iodide upon mechanochemical treatment. Glass Physics and Chemistry, 2012, 38, 155-161.	0.2	4
53	Preparation of films of vitreous solid electrolyte (GeSe2)30(Sb2Se3)30(AgI)40 using laser ablation method. Glass Physics and Chemistry, 2015, 41, 440-442.	0.2	4
54	Increasing the Plasticity of Chalcogenide Glasses in the System Ag ₂ Se–Sb ₂ Se ₃ –GeSe ₂ . Chemistry of Materials, 2022, 34, 2743-2751.	3.2	4

#	Article	IF	CITATIONS
55	Smeared first-order phase transition in chalcogenide melts. Journal of Non-Crystalline Solids, 1999, 256-257, 78-82.	1.5	3
56	Glass Formation and Luminescence of Glasses in the Ga2S3–GeS2–Nd2S3System. Glass Physics and Chemistry, 2001, 27, 209-213.	0.2	3
57	Preparation and investigation of 0.7Agl · 0.3ZnO nanocomposite films. Glass Physics and Chemistry, 2009, 35, 668-672.	0.2	3
58	Magnetic Susceptibility and Local Structure of the Glasses Ga2S3(As2S3, PbS)–GeS2–MnS. Journal of Solid State Chemistry, 2000, 152, 388-391.	1.4	2
59	Resonant Optical Nonlinearity in Vitreous Semiconductors. Glass Physics and Chemistry, 2003, 29, 328-329.	0.2	2
60	Effect of Light on the Magnetic Properties of Semiconductors. Glass Physics and Chemistry, 2005, 31, 563-582.	0.2	2
61	Composition investigation of lithium niobate crystals and its influence on the optical damage resistance. Russian Journal of General Chemistry, 2010, 80, 1543-1549.	0.3	2
62	Nanocomposites based on silver iodide and aluminum oxide. Glass Physics and Chemistry, 2013, 39, 94-99.	0.2	2
63	Vitreous films of Ga6Ge17S43 composition as a biochip substrate. Glass Physics and Chemistry, 2014, 40, 467-469.	0.2	2
64	Laser-induced processes in chemistry and material sciences. Russian Chemical Reviews, 2015, 84, E01-E01.	2.5	2
65	LASER-INDUCED DECOMPOSITION OF [CO(NH3)5 (CN5 O2)](CLO4)2. International Journal of Energetic Materials and Chemical Propulsion, 2016, 15, 113-122.	0.2	2
66	Investigation of structure of GeS1.35 glasses with the use of isotopically enriched germanium and Raman scattering spectroscopy. Journal of Non-Crystalline Solids, 2017, 457, 164-168.	1.5	2
67	Stabilization of high-temperature Ag2Se phase at room temperature during the crystallization of an amorphous film. Thin Solid Films, 2020, 709, 138187.	0.8	2
68	Title is missing!. Glass Physics and Chemistry, 2001, 27, 406-408.	0.2	1
69	Title is missing!. Glass Physics and Chemistry, 2003, 29, 428-430.	0.2	1
70	Magnetic Properties of Chalcogenide Glasses. Semiconductors and Semimetals, 2004, 79, 229-275.	0.4	1
71	Formation of CuCr2Se4 ferromagnetic spinel microcrystals in a chalcogenide glass matrix. Glass Physics and Chemistry, 2005, 31, 168-172.	0.2	1
72	On the variation of the structure of nanocomposite solid electrolytes. Glass Physics and Chemistry, 2006, 32, 491-493.	0.2	1

#	Article	IF	CITATIONS
73	Specific optical and photoelectric properties of thin Culn3Se5 films synthesized by laser deposition. Semiconductors, 2007, 41, 1394-1397.	0.2	1
74	Pump slope-improved fiber-ring laser by recycling the residual pumping power. Laser Physics, 2008, 18, 1040-1043.	0.6	1
75	Temperature annealing of radiation defects in xCu2Se-(1 â^' x)As2Se3 glasses: Dependence on composition. Glass Physics and Chemistry, 2013, 39, 57-63.	0.2	1
76	As39S6 films as protein-selective two-dimensional arrays for biochips. Glass Physics and Chemistry, 2014, 40, 470-471.	0.2	1
77	Control of phase composition of silver iodide by mechanoactivation. Glass Physics and Chemistry, 2015, 41, 637-642.	0.2	1
78	Superionic nanolayered structure based on amorphous Ag2Se. Journal of Physics and Chemistry of Solids, 2021, 148, 109731.	1.9	1
79	On the Possible Existence of Vitreous Solid Electrolytes with a Molten Cationic Sublattice. Glass Physics and Chemistry, 2003, 29, 137-139.	0.2	0
80	The influence of the preparation technique and thickness of As2Se3 · AgBr glass layers on the electrical conductivity. Glass Physics and Chemistry, 2006, 32, 214-217.	0.2	0
81	<title>Absorption and photoluminescence of Ga-La-S:O and Ga-Ge-As-S glasses doped with rare-earth ions</title> ., 2007,,.		О
82	Preparation of CuCr2Se4/ZnSe layered films on glass substrates by laser ablation. Glass Physics and Chemistry, 2008, 34, 146-149.	0.2	0
83	Photoinduced magnetization of glass-ceramic alloys in the Cu-As-Cr-Se system. Class Physics and Chemistry, 2009, 35, 468-474.	0.2	0
84	Effect of defects of the domain structure on the optical properties of ferroelectric crystals. Glass Physics and Chemistry, 2010, 36, 10-16.	0.2	0
85	Preparation and ion conductivity of composite films Agl-ZnO. , 2015, , .		О