
Chungho Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261191/publications.pdf Version: 2024-02-01

Снимсно Кім

#	Article	IF	CITATIONS
1	UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy. Nature Communications, 2021, 12, 1955.	5.8	9
2	Insight Into Pathological Integrin αIIbβ3 Activation From Safeguarding The Inactive State. Journal of Molecular Biology, 2021, 433, 166832.	2.0	2
3	TRIM28 functions as a negative regulator of aggresome formation. Autophagy, 2021, 17, 4231-4248.	4.3	7
4	Syndecan Transmembrane Domain Specifically Regulates Downstream Signaling Events of the Transmembrane Receptor Cytoplasmic Domain. International Journal of Molecular Sciences, 2021, 22, 7918.	1.8	1
5	A JUN N-terminal kinase inhibitor induces ectodomain shedding of the cancer-associated membrane protease Prss14/epithin via protein kinase CβII. Journal of Biological Chemistry, 2020, 295, 7168-7177.	1.6	6
6	Intramembrane proteolysis of an extracellular serine protease, epithin/PRSS14, enables its intracellular nuclear function. BMC Biology, 2020, 18, 60.	1.7	5
7	Topological Adaptation of Transmembrane Domains to the Force-Modulated Lipid Bilayer Is a Basis of Sensing Mechanical Force. Current Biology, 2020, 30, 1614-1625.e5.	1.8	20
8	Selection and identification of a novel bone-targeting peptide for biomedical imaging of bone. Scientific Reports, 2020, 10, 10576.	1.6	7
9	Inhibition of Smooth Muscle Cell Proliferation and Migration by a Talin Modulator Attenuates Neointimal Formation after Femoral Arterial Injury. Korean Circulation Journal, 2020, 50, 613.	0.7	4
10	Targeting metastatic breast cancer with peptide epitopes derived from autocatalytic loop of Prss14/ST14 membrane serine protease and with monoclonal antibodies. Journal of Experimental and Clinical Cancer Research, 2019, 38, 363.	3.5	8
11	Membrane Anchoring of α-Helical Proteins: Role of Tryptophan. Journal of Physical Chemistry B, 2018, 122, 1185-1194.	1.2	25
12	Cellular machinery for sensing mechanical force. BMB Reports, 2018, 51, 623-629.	1.1	41
13	Identification of indothiazinone as a natural antiplatelet agent. Chemical Biology and Drug Design, 2017, 90, 873-882.	1.5	6
14	Epigallocatechin gallate has pleiotropic effects on transmembrane signaling by altering the embedding of transmembrane domains. Journal of Biological Chemistry, 2017, 292, 9858-9864.	1.6	9
15	Disruption of TACE-filamin interaction can inhibit TACE-mediated ectodomain shedding. Biochemical and Biophysical Research Communications, 2017, 490, 997-1003.	1.0	7
16	Talin Modulation by a Synthetic N-Acylurea Derivative Reduces Angiogenesis in Human Endothelial Cells. International Journal of Molecular Sciences, 2017, 18, 221.	1.8	7
17	Impact of suppression of tumorigenicity 14 (ST14)/serine protease 14 (Prss14) expression analysis on the prognosis and management of estrogen receptor negative breast cancer. Oncotarget, 2016, 7, 34643-34663.	0.8	10
18	Calmodulin Mediates Ca ²⁺ -Dependent Inhibition of Tie2 Signaling and Acts as a Developmental Brake During Embryonic Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1406-1416.	1.1	5

Снимсно Кім

#	Article	IF	CITATIONS
19	Vimentin filaments regulate integrin-ligand interactions by binding to the cytoplasmic tail of integrin β3. Journal of Cell Science, 2016, 129, 2030-42.	1.2	41
20	Vimentin filament controls integrin α5β1â€mediated cell adhesion by binding to integrin through its Ser38 residue. FEBS Letters, 2016, 590, 3517-3525.	1.3	19
21	The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood, 2016, 128, 479-487.	0.6	110
22	Amelioration of sepsis by TIE2 activation–induced vascular protection. Science Translational Medicine, 2016, 8, 335ra55.	5.8	151
23	Antibody neutralization of cell-surface gC1qR/HABP1/SF2-p32 prevents lamellipodia formation and tumorigenesis. Oncotarget, 2016, 7, 49972-49985.	0.8	22
24	Intermolecular Transmembrane Domain Interactions Activate Integrin αIIbβ3. Journal of Biological Chemistry, 2014, 289, 18507-18513.	1.6	10
25	Gln-362 of Angiopoietin-2 Mediates Migration of Tumor and Endothelial Cells through Association with α5β1 Integrin. Journal of Biological Chemistry, 2014, 289, 31330-31340.	1.6	26
26	Integrin αIIb tail distal of GFFKR participates in insideâ€out αIIbβ3 activation. Journal of Thrombosis and Haemostasis, 2014, 12, 1145-1155.	1.9	11
27	Shedding of epithin/PRSS14 is induced by TGF-β and mediated by tumor necrosis factor-α converting enzyme. Biochemical and Biophysical Research Communications, 2014, 452, 1084-1090.	1.0	12
28	Differences in α–β transmembrane domain interactions among integrins enable diverging integrin signaling. Biochemical and Biophysical Research Communications, 2013, 436, 406-412.	1.0	8
29	The nucleus of endothelial cell as a sensor of blood flow direction. Biology Open, 2013, 2, 1007-1012.	0.6	74
30	Basic amino-acid side chains regulate transmembrane integrin signalling. Nature, 2012, 481, 209-213.	13.7	112
31	Talin activates integrins by altering the topology of the β transmembrane domain. Journal of Cell Biology, 2012, 197, 605-611.	2.3	90
32	Reconstruction of integrin activation. Blood, 2012, 119, 26-33.	0.6	105
33	Epithin/PRSS14 proteolytically regulates angiopoietin receptor Tie2 during transendothelial migration. Blood, 2011, 117, 1415-1424.	0.6	25
34	Protein kinase A governs a RhoA–RhoGDI protrusion–retraction pacemaker in migrating cells. Nature Cell Biology, 2011, 13, 660-667.	4.6	149
35	Molecular mechanism of inside-out integrin regulation. Journal of Thrombosis and Haemostasis, 2011, 9, 20-25.	1.9	81
36	Regulation of Integrin Activation. Annual Review of Cell and Developmental Biology, 2011, 27, 321-345.	4.0	369

Снимсно Кім

#	Article	IF	CITATIONS
37	Soluble epithin/PRSS14 secreted from cancer cells contains active angiogenic potential. Molecules and Cells, 2010, 29, 617-623.	1.0	10
38	The final steps of integrin activation: the end game. Nature Reviews Molecular Cell Biology, 2010, 11, 288-300.	16.1	888
39	Epithin, a target of transforming growth factor-β signaling, mediates epithelial–mesenchymal transition. Biochemical and Biophysical Research Communications, 2010, 395, 553-559.	1.0	12
40	The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO Journal, 2009, 28, 3623-3632.	3.5	287
41	The structure of the integrin αIlbβ3 transmembrane complex explains integrin transmembrane signalling. EMBO Journal, 2009, 28, 1351-1361.	3.5	312
42	Interactions of platelet integrin αΙΙb and β3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood, 2009, 113, 4747-4753.	0.6	69
43	CD98hc (SLC3A2) Interaction with the Integrin β Subunit Cytoplasmic Domain Mediates Adhesive Signaling. Journal of Biological Chemistry, 2007, 282, 24477-24484.	1.6	57
44	Filamin is essential for shedding of the transmembrane serine protease, epithin. EMBO Reports, 2005, 6, 1045-1051.	2.0	36
45	N-terminal Processing Is Essential for Release of Epithin, a Mouse Type II Membrane Serine Protease. Journal of Biological Chemistry, 2001, 276, 44581-44589.	1.6	75