
Jing H Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9260990/publications.pdf

Version: 2024-02-01

LINC H WANC

#	Article	IF	CITATIONS
1	Differential responses to immune checkpoint inhibitor dictated by pre-existing differential immune profiles in squamous cell carcinomas caused by same initial oncogenic drivers. Journal of Experimental and Clinical Cancer Research, 2022, 41, 123.	3.5	10
2	Studying Immunotherapy Resistance in a Melanoma Autologous Humanized Mouse Xenograft. Molecular Cancer Research, 2021, 19, 346-357.	1.5	6
3	Differences in TCR repertoire and T cell activation underlie the divergent outcomes of antitumor immune responses in tumor-eradicating versus tumor-progressing hosts. , 2021, 9, e001615.		18
4	Testing Cancer Immunotherapy in a Human Immune System Mouse Model: Correlating Treatment Responses to Human Chimerism, Therapeutic Variables and Immune Cell Phenotypes. Frontiers in Immunology, 2021, 12, 607282.	2.2	19
5	How the Signaling Crosstalk of B Cell Receptor (BCR) and Co-Receptors Regulates Antibody Class Switch Recombination: A New Perspective of Checkpoints of BCR Signaling. Frontiers in Immunology, 2021, 12, 663443.	2.2	14
6	Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma. Communications Biology, 2021, 4, 1005.	2.0	10
7	MHC class I-independent activation of virtual memory CD8 T cells induced by chemotherapeutic agent-treated cancer cells. Cellular and Molecular Immunology, 2021, 18, 723-734.	4.8	23
8	Why the Outcome of Antiâ€Tumor Immune Responses is Heterogeneous: A Novel Idea in the Context of Immunological Heterogeneity in Cancers. BioEssays, 2020, 42, 2000024.	1.2	9
9	Deletion of p53 and Hyper-Activation of PIK3CA in Keratin-15+ Stem Cells Lead to the Development of Spontaneous Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2020, 21, 6585.	1.8	8
10	HDAC inhibitors overcome immunotherapy resistance in B-cell lymphoma. Protein and Cell, 2020, 11, 472-482.	4.8	50
11	TRAF3 Acts as a Checkpoint of B Cell Receptor Signaling to Control Antibody Class Switch Recombination and Anergy. Journal of Immunology, 2020, 205, 830-841.	0.4	19
12	Tumor immune microenvironment in head and neck cancers. Molecular Carcinogenesis, 2020, 59, 766-774.	1.3	90
13	Abstract PO-54: Mechanistic consequences of histone-deacetylase inhibition towards sensitizing PD1 blockade-resistant B-cell lymphomas. , 2020, , .		0
14	Histone Deacetylase Inhibition Sensitizes PD1 Blockade–Resistant B-cell Lymphomas. Cancer Immunology Research, 2019, 7, 1318-1331.	1.6	53
15	Lessons learned fromSMAD4loss in squamous cell carcinomas. Molecular Carcinogenesis, 2019, 58, 1648-1655.	1.3	11
16	Macrophages Promote Growth of Squamous Cancer Independent of T cells. Journal of Dental Research, 2019, 98, 896-903.	2.5	20
17	Signaling control of antibody isotype switching. Advances in Immunology, 2019, 141, 105-164.	1.1	17
18	Chemotherapy-induced differential cell cycle arrest in B-cell lymphomas affects their sensitivity to Wee1 inhibition. Haematologica, 2018, 103, 466-476.	1.7	23

JING H WANG

#	Article	IF	CITATIONS
19	TRAF2 Deficiency in B Cells Impairs CD40-Induced Isotype Switching That Can Be Rescued by Restoring NF-κB1 Activation. Journal of Immunology, 2018, 201, 3421-3430.	0.4	13
20	Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors. Oncotarget, 2016, 7, 81341-81356.	0.8	66
21	Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing. BMC Genomics, 2016, 17, 823.	1.2	2
22	Combined deletion of Xrcc4 and Trp53 in mouse germinal center B cells leads to novel B cell lymphomas with clonal heterogeneity. Journal of Hematology and Oncology, 2016, 9, 2.	6.9	8
23	Interplay between Target Sequences and Repair Pathways Determines Distinct Outcomes of AID-Initiated Lesions. Journal of Immunology, 2016, 196, 2335-2347.	0.4	5
24	Imbalanced PTEN and PI3K Signaling Impairs Class Switch Recombination. Journal of Immunology, 2015, 195, 5461-5471.	0.4	19
25	Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell, 2015, 163, 1124-1137.	13.5	136
26	AID-Initiated DNA Lesions Are Differentially Processed in Distinct B Cell Populations. Journal of Immunology, 2014, 193, 5545-5556.	0.4	13
27	Generation and repair of AID-initiated DNA lesions in B lymphocytes. Frontiers of Medicine, 2014, 8, 201-216.	1.5	27
28	CDK4 deficiency promotes genomic instability and enhances Myc-driven lymphomagenesis. Journal of Clinical Investigation, 2014, 124, 1672-84.	3.9	18
29	The role of activation-induced deaminase in antibody diversification and genomic instability. Immunologic Research, 2013, 55, 287-297.	1.3	17
30	The role of a newly identified SET domain-containing protein, SETD3, in oncogenesis. Haematologica, 2013, 98, 739-743.	1.7	36
31	<scp>CEACAM</scp> 1 on activated <scp>NK</scp> cells inhibits <scp>NKG</scp> 2 <scp>D</scp> â€mediated cytolytic function and signaling. European Journal of Immunology, 2013, 43, 2473-2483.	1.6	44
32	Impact of chromosomal translocation and genomic instability on personalized medicine. Personalized Medicine, 2013, 10, 111-114.	0.8	0
33	Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2473-2478.	3.3	106
34	Target DNA Sequence Directly Regulates the Frequency of Activation-Induced Deaminase-Dependent Mutations. Journal of Immunology, 2012, 189, 3970-3982.	0.4	16
35	Mechanisms and impacts of chromosomal translocations in cancers. Frontiers of Medicine, 2012, 6, 263-274.	1.5	18
36	Aid-Initiated DNA Lesions Are Differentially Processed in Distinct B Cell Differentiation Stages in a Locus-Dependent Manner Blood, 2012, 120, 2376-2376.	0.6	6

JING H WANG

#	Article	IF	CITATIONS
37	Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. Journal of Experimental Medicine, 2011, 208, 1649-1660.	4.2	107
38	Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3034-3039.	3.3	168
39	Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. Journal of Experimental Medicine, 2010, 207, 417-427.	4.2	161
40	Homozygous DNA ligase IV R278H mutation in mice leads to leaky SCID and represents a model for human LIG4 syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3024-3029.	3.3	39
41	Mechanisms promoting translocations in editing and switching peripheral B cells. Nature, 2009, 460, 231-236.	13.7	113
42	Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. Journal of Experimental Medicine, 2008, 205, 3079-3090.	4.2	68
43	Evolution of the Immunoglobulin Heavy Chain Class Switch Recombination Mechanism. Advances in Immunology, 2007, 94, 157-214.	1.1	221
44	Recruitment and Activation of Naive T Cells in the Islets by Lymphotoxin Î ² Receptor-Dependent Tertiary Lymphoid Structure. Immunity, 2006, 25, 499-509.	6.6	139
45	Tumor necrosis factor family members and inflammatory bowel disease. Immunological Reviews, 2005, 204, 144-155.	2.8	65
46	Stimulating Lymphotoxin \hat{l}^2 Receptor on the Dendritic Cells Is Critical for Their Homeostasis and Expansion. Journal of Immunology, 2005, 175, 6997-7002.	0.4	66
47	Contribution of the Lymphotoxin β Receptor to Liver Regeneration. Journal of Immunology, 2005, 175, 1295-1300.	0.4	65
48	The Critical Role of LIGHT in Promoting Intestinal Inflammation and Crohn's Disease. Journal of Immunology, 2005, 174, 8173-8182.	0.4	82
49	Influence of switch region length on immunoglobulin class switch recombination. Proceedings of the United States of America, 2005, 102, 2466-2470.	3.3	53
50	The role of herpesvirus entry mediator as a negative regulator of T cell–mediated responses. Journal of Clinical Investigation, 2005, 115, 711-717.	3.9	169
51	Priming of naive T cells inside tumors leads to eradication of established tumors. Nature Immunology, 2004, 5, 141-149.	7.0	331
52	The Role of LIGHT in T Cell-Mediated Immunity. Immunologic Research, 2004, 30, 201-214.	1.3	37
53	Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. Journal of Clinical Investigation, 2004, 113, 826-835.	3.9	99
54	Lymphoid microenvironment in the gut for immunoglobulin A and inflammation. Immunological Reviews, 2003, 195, 190-201.	2.8	13

JING H WANG

#	Article	IF	CITATIONS
55	LIGHT (a Cellular Ligand for Herpes Virus Entry Mediator and Lymphotoxin Receptor)-Mediated Thymocyte Deletion Is Dependent on the Interaction Between TCR and MHC/Self-Peptide. Journal of Immunology, 2003, 170, 3986-3993.	0.4	25
56	The complementation of lymphotoxin deficiency with LIGHT, a newly discovered TNF family member, for the restoration of secondary lymphoid structure and function. European Journal of Immunology, 2002, 32, 1969.	1.6	67
57	Complementary Effects of TNF and Lymphotoxin on the Formation of Germinal Center and Follicular Dendritic Cells. Journal of Immunology, 2001, 166, 330-337.	0.4	76
58	The Critical Role of LIGHT, a TNF Family Member, in T Cell Development. Journal of Immunology, 2001, 167, 5099-5105.	0.4	70
59	Signal Via Lymphotoxin-βR on Bone Marrow Stromal Cells Is Required for an Early Checkpoint of NK Cell Development. Journal of Immunology, 2001, 166, 1684-1689.	0.4	64
60	The regulation of T cell homeostasis and autoimmunity by T cell–derived LIGHT. Journal of Clinical Investigation, 2001, 108, 1771-1780.	3.9	106
61	The regulation of T cell homeostasis and autoimmunity by T cell–derived LIGHT. Journal of Clinical Investigation, 2001, 108, 1771-1780.	3.9	204
62	Antigen persistence is required for somatic mutation and affinity maturation of immunoglobulin. European Journal of Immunology, 2000, 30, 2226-2234.	1.6	49
63	Antigen persistence is required for somatic mutation and affinity maturation of immunoglobulin. European Journal of Immunology, 2000, 30, 2226.	1.6	34
64	The Requirement of Membrane Lymphotoxin for the Presence of Dendritic Cells in Lymphoid Tissues. Journal of Experimental Medicine, 1999, 190, 629-638.	4.2	140