Vincent Baeten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9260559/publications.pdf

Version: 2024-02-01

64 64 64 1852 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Development of real-time PCR methods for cocoa authentication in processed cocoa-derived products. Food Control, 2022, 131, 108414.	5.5	5
2	Comparison of near-infrared, mid-infrared, Raman spectroscopy and near-infrared hyperspectral imaging to determine chemical, structural and rheological properties of apple purees. Journal of Food Engineering, 2022, 323, 111002.	5.2	9
3	Deep computer vision system for cocoa classification. Multimedia Tools and Applications, 2022, 81, 41059-41077.	3.9	17
4	Assessment of kernel presence in winter wheat ears at spikelet scale using near-infrared hyperspectral imaging. Journal of Cereal Science, 2022, 106, 103497.	3.7	2
5	Structural and Vibrational Investigations of Mixtures of Cocoa Butter (CB), Cocoa Butter Equivalent (CBE) and Anhydrous Milk Fat (AMF) to Understand Fat Bloom Process. Applied Sciences (Switzerland), 2022, 12, 6594.	2.5	2
6	Application of near infrared hyperspectral imaging for identifying and quantifying red clover contained in experimental poultry refusals. Animal Feed Science and Technology, 2021, 273, 114827.	2.2	1
7	Inter-laboratory study on the detection of bovine processed animal protein in feed by LC-MS/MS-based proteomics. Food Control, 2021, 125, 107944.	5.5	8
8	The usefulness of NIRS calibrations based on feed and feces spectra to predict nutrient content, digestibility and net energy of pig feeds. Animal Feed Science and Technology, 2021, 281, 115091.	2.2	10
9	Local anomaly detection and quantitative analysis of contaminants in soybean meal using near infrared imaging: The example of non-protein nitrogen. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 225, 117494.	3.9	4
10	Chemometrics in NIR Hyperspectral Imaging: Theory and Applications in the Agricultural Crops and Products Sector., 2020,, 361-379.		4
11	Vibrational Spectroscopy Coupled to a Multivariate Analysis Tiered Approach for Argentinean Honey Provenance Confirmation. Foods, 2020, 9, 1450.	4.3	5
12	Authentication of cocoa (Theobroma cacao) bean hybrids by NIR-hyperspectral imaging and chemometrics. Food Control, 2020, 118, 107445.	5 . 5	43
13	Official Feed Control Linked to the Detection of Animal Byproducts: Past, Present, and Future. Journal of Agricultural and Food Chemistry, 2020, 68, 8093-8103.	5.2	12
14	Continuous statistical modelling in characterisation of complex hydrocolloid mixtures using near infrared spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2020, 196, 103910.	3. 5	2
15	Monitoring of the oxidation of the oil from sacha inchi (Plukenetia volubilis) seeds supplemented with extracts from tara (Caesalpinia spinosa) pods using conventional and MIR techniques. Grasas Y Aceites, 2020, 71, 359.	0.9	1
16	Near Infrared Hyperspectral Imaging for White Maize Classification According to Grading Regulations. Food Analytical Methods, 2019, 12, 1612-1624.	2.6	33
17	A mass spectrometry method for sensitive, specific and simultaneous detection of bovine blood meal, blood products and milk products in compound feed. Food Chemistry, 2018, 245, 981-988.	8.2	18
18	NIR hyperspectral imaging spectroscopy and chemometrics for the discrimination of roots and crop residues extracted from soil samples. Journal of Chemometrics, 2018, 32, e2982.	1.3	11

#	Article	IF	CITATIONS
19	Discrimination between durum and common wheat kernels using near infrared hyperspectral imaging. Journal of Cereal Science, 2018, 84, 74-82.	3.7	38
20	Protocol for the isolation of processed animal proteins from insects in feed and their identification by microscopy. Food Control, 2018, 92, 496-504.	5.5	15
21	Synchronous fluorescence spectroscopy for detecting blood meal and blood products. Talanta, 2018, 189, 166-173.	5.5	6
22	Light microscopy with differential staining techniques for the characterisation and discrimination of insects versus marine arthropods processed animal proteins. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1377-1383.	2.3	11
23	Collaborative study on the effect of grinding on the detection of bones from processed animal proteins in feed by light microscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1451-1460.	2.3	2
24	Online detection and quantification of particles of ergot bodies in cereal flour using near-infrared hyperspectral imaging. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1312-1319.	2.3	15
25	Identification of specific bovine blood biomarkers with a non-targeted approach using HPLC ESI tandem mass spectrometry. Food Chemistry, 2016, 213, 417-424.	8.2	24
26	In situ analysis of lipid oxidation in oilseed-based food products using near-infrared spectroscopy and chemometrics: The sunflower kernel paste (tahini) example. Talanta, 2016, 155, 336-346.	5 . 5	18
27	Linseed oil presents different patterns of oxidation in real-time and accelerated aging assays. Food Chemistry, 2016, 208, 111-115.	8.2	31
28	Use of a multivariate moving window PCA for the untargeted detection of contaminants in agro-food products, as exemplified by the detection of melamine levels in milk using vibrational spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2016, 152, 157-162.	3.5	13
29	Differentiation of meat and bone meal from fishmeal by near-infrared spectroscopy: Extension of scope to defatted samples. Food Control, 2014, 43, 155-162.	5.5	17
30	Line Scan Hyperspectral Imaging Spectroscopy for the Early Detection of Melamine and Cyanuric Acid in Feed. Journal of Near Infrared Spectroscopy, 2014, 22, 103-112.	1.5	21
31	Nonâ€destructive measurement of vitamin C, total polyphenol and sugar content in apples using nearâ€infrared spectroscopy. Journal of the Science of Food and Agriculture, 2013, 93, 238-244.	3.5	103
32	Validation and transferability study of a method based on near-infrared hyperspectral imaging for the detection and quantification of ergot bodies in cereals. Analytical and Bioanalytical Chemistry, 2013, 405, 7765-7772.	3.7	39
33	Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review. Applied Spectroscopy Reviews, 2013, 48, 142-159.	6.7	238
34	Discrimination of grassland species and their classification in botanical families by laboratory scale NIR hyperspectral imaging: Preliminary results. Talanta, 2013, 116, 149-154.	5.5	22
35	Detection of Melamine and Cyanuric Acid in Feed Ingredients by near Infrared Spectroscopy and Chemometrics. Journal of Near Infrared Spectroscopy, 2013, 21, 183-194.	1.5	26
36	Detection and identification of animal by-products in animal feed for the control of transmissible spongiform encephalopathies., 2012,, 94-113.		5

3

#	Article	IF	CITATIONS
37	NIR hyperspectral imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed. Chemometrics and Intelligent Laboratory Systems, 2012, 117, 233-239.	3.5	76
38	Online detection and quantification of ergot bodies in cereals using near infrared hyperspectral imaging. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 232-240.	2.3	57
39	Validation of a near infrared microscopy method for the detection of animal products in feedingstuffs: results of a collaborative study. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1872-1880.	2.3	13
40	Near-Infrared, Mid-Infrared, and Raman Spectroscopy. , 2012, , 59-89.		18
41	Détection des protéines animales transformées : expérience et perspectives européennes. OIE Revue Scientifique Et Technique, 2012, 31, 1011-1031.	1.2	4
42	Comparison of various chemometric approaches for large near infrared spectroscopic data of feed and feed products. Analytica Chimica Acta, 2011, 705, 30-34.	5.4	37
43	The Potential of near Infrared Microscopy to Detect, Identify and Quantify Processed Animal by-Products. Journal of Near Infrared Spectroscopy, 2011, 19, 211-231.	1.5	24
44	An overview of the legislation and light microscopy for detection of processed animal proteins in feeds. Microscopy Research and Technique, 2011, 74, 735-743.	2.2	29
45	In-House Validation of a near Infrared Hyperspectral Imaging Method for Detecting Processed Animal Proteins in Compound Feed. Journal of Near Infrared Spectroscopy, 2010, 18, 121-133.	1.5	18
46	New approach for the quantification of processed animal proteins in feed using light microscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 926-934.	2.3	8
47	Key parameters for the development of a NIR microscopic method for the quantification of processed by-products of animal origin in compound feedingstuffs. Analytical and Bioanalytical Chemistry, 2010, 397, 1965-1973.	3.7	9
48	Development of a real-time PCR protocol for the species origin confirmation of isolated animal particles detected by NIRM. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 1118-1127.	2.3	15
49	Calibration Transfer from Dispersive Instruments to Handheld Spectrometers. Applied Spectroscopy, 2010, 64, 644-648.	2.2	49
50	Spectroscopic Imaging., 2009, , 173-196.		12
51	Discrimination of Fish Bones from other Animal Bones in the Sedimented Fraction of Compound Feeds by near Infrared Microscopy. Journal of Near Infrared Spectroscopy, 2007, 15, 81-88.	1.5	43
52	New developments in the detection and identification of processed animal proteins in feeds. Animal Feed Science and Technology, 2007, 133, 63-83.	2.2	62
53	Screening of compound feeds using NIR hyperspectral data. Chemometrics and Intelligent Laboratory Systems, 2006, 84, 114-118.	3.5	46
54	Effective PCR detection of animal species in highly processed animal byproducts and compound feeds. Analytical and Bioanalytical Chemistry, 2006, 385, 1045-1054.	3.7	89

#	Article	IF	Citations
55	Determination of processed animal proteins in feed: The performance characteristics of classical microscopy and immunoassay methods. Food Additives and Contaminants, 2006, 23, 252-264.	2.0	12
56	Detection of banned meat and bone meal in feedstuffs by near-infrared microscopic analysis of the dense sediment fraction. Analytical and Bioanalytical Chemistry, 2005, 382, 149-157.	3.7	54
57	Determination of Processed Animal Proteins, Including Meat and Bone Meal, in Animal Feed. Journal of AOAC INTERNATIONAL, 2004, 87, 1334-1341.	1.5	41
58	Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. Journal of Chemometrics, 2004, 18, 341-349.	1.3	138
59	Determination of processed animal proteins, including meat and bone meal, in animal feed. Journal of AOAC INTERNATIONAL, 2004, 87, 1334-41.	1.5	10
60	An overview of tests for animal tissues in feeds applied in response to public health concerns regarding bovine spongiform encephalopathy. OIE Revue Scientifique Et Technique, 2003, 22, 311-331.	1.2	53
61	Oil and Fat Classification by Selected Bands of Near-Infrared Spectroscopy. Applied Spectroscopy, 2000, 54, 1168-1174.	2.2	206
62	Assessment of pesticide coating on cereal seeds by near infrared hyperspectral imaging, $0,$	0.0	9
63	Quantification of leghaemoglobin content in pea nodules based on near infrared hyperspectral imaging spectroscopy and chemometrics. Journal of Spectral Imaging, 0, , .	0.0	2