Dawid Taler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9260320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analytical-numerical method for calculating cross-flow tube heat exchangers considering temperature-dependent fluid heat capacities. International Journal of Heat and Mass Transfer, 2022, 183, 122202.	2.5	4
2	Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications. Energy, 2022, 239, 122771.	4.5	12
3	A new software program for monitoring the energy distribution in a thermal waste treatment plant system. Renewable Energy, 2022, 184, 1055-1073.	4.3	5
4	Increase the flexibility of steam boilers by optimisation of critical pressure component heating. Energy, 2022, 250, 123855.	4.5	7
5	Calculating the Efficiency of Complex-Shaped Fins. Energies, 2021, 14, 577.	1.6	4
6	New analytical-numerical method for modelling of tube cross-flow heat exchangers with complex flow systems. Energy, 2021, 228, 120633.	4.5	13
7	Optimisation of heating and cooling of pressure thick-walled components operating in the saturated steam area. Energy, 2021, 231, 120917.	4.5	4
8	Thermal Calculations of Four-Row Plate-Fin and Tube Heat Exchanger Taking into Account Different Air-Side Correlations on Individual Rows of Tubes for Low Reynold Numbers. Energies, 2021, 14, 6978.	1.6	6
9	New calculation method for tube cross-flow heat exchangers. E3S Web of Conferences, 2021, 323, 00032.	0.2	0
10	Modeling and experimental validation and thermal performance assessment of a sun-tracked and cooled PVT system under low solar irradiation. Energy Conversion and Management, 2020, 222, 113289.	4.4	35
11	Experimental Verification of an Analytical Mathematical Model of a Round or Oval Tube Two-Row Car Radiator. Energies, 2020, 13, 3399.	1.6	10
12	Transient response of a plate-fin-and-tube heat exchanger considering different heat transfer coefficients in individual tube rows. Energy, 2020, 195, 117023.	4.5	12
13	Influence of the Thermometer Inertia on the Quality of Temperature Control in a Hot Liquid Tank Heated with Electric Energy. Energies, 2020, 13, 4039.	1.6	8
14	CFD analysis of steam superheater operation in steady and transient state. Energy, 2020, 199, 117423.	4.5	19
15	New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings. Energy, 2020, 200, 117527.	4.5	2
16	Thermal calculations of plate–fin–and-tube heat exchangers with different heat transfer coefficients on each tube row. Energy, 2020, 203, 117806.	4.5	25
17	Mass, Momentum and Energy Conservation Equations. Studies in Systems, Decision and Control, 2019, , 9-46.	0.8	0
18	Mathematical Modelling of Tube Cross-Flow Heat Exchangers Operating in Steady-State Conditions. Studies in Systems, Decision and Control, 2019, , 339-369.	0.8	0

#	Article	IF	CITATIONS
19	Allowable Rates of Fluid Temperature Variations and Thermal Stress Monitoring in Pressure Elements of Supercritical Boilers. Heat Transfer Engineering, 2019, 40, 1430-1441.	1.2	7
20	Numerical Modelling and Experimental Testing of Heat Exchangers. Studies in Systems, Decision and Control, 2019, , .	0.8	25
21	Assessment of the Superheater Ash Fouling Using a Numerical Model of the Superheater. Heat Transfer Engineering, 2019, 40, 1419-1429.	1.2	2
22	Analogies Between the Heat and the Momentum Transfer. Studies in Systems, Decision and Control, 2019, , 157-171.	0.8	0
23	Mathematical Models of Heat Exchangers. Studies in Systems, Decision and Control, 2019, , 321-337.	0.8	0
24	The use of a solution of the inverse heat conduction problem to monitor thermal stresses. E3S Web of Conferences, 2019, 108, 01003.	0.2	0
25	Modeling of transient operation of steam superheater in CFB boiler. Energy, 2019, 182, 965-974.	4.5	13
26	Monitoring of transient thermal stresses in pressure components of steam boilers using an innovative technique for measuring the fluid temperature. Energy, 2019, 175, 139-150.	4.5	15
27	Mathematical modeling of heat storage unit for air heating of the building. Renewable Energy, 2019, 141, 988-1004.	4.3	10
28	Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading. Energy, 2019, 175, 580-592.	4.5	41
29	Determination of Transient Fluid Temperature and Thermal Stresses in Pressure Thick-Walled Elements Using a New Design Thermometer. Energies, 2019, 12, 222.	1.6	15
30	Thermal stress monitoring in thick walled pressure components of steam boilers. Energy, 2019, 175, 645-666.	4.5	29
31	Monitoring of transient 3D temperature distribution and thermal stress in pressure elements based on the wall temperature measurement. Journal of Thermal Stresses, 2019, 42, 698-724.	1.1	11
32	Numerical analysis and performance assessment of the Thermal Energy Storage unit aimed to be utilized in Smart Electric Thermal Storage (SETS). Energy, 2019, 173, 755-771.	4.5	15
33	The use of pressure hot water storage tanks to improve the energy flexibility of the steam power unit. Energy, 2019, 173, 926-936.	4.5	45
34	New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings. E3S Web of Conferences, 2019, 128, 01025.	0.2	0
35	Transient behavior of a plate-fin-and-tube heat exchanger taking into account different heat transfer coefficients on the individual tube rows. E3S Web of Conferences, 2019, 128, 04001.	0.2	2
36	Transient behavior of a plate-fin-and-tube heat exchanger taking into account different heat transfer coefficients on the individual tube rows. E3S Web of Conferences, 2019, 137, 01036.	0.2	0

#	Article	IF	CITATIONS
37	Numerical modeling of transient heat transfer in heat storage unit with channel structure. Applied Thermal Engineering, 2019, 149, 841-853.	3.0	12
38	Numerical and experimental study on the thermal performance of the concrete accumulator for solar heating systems. Energy, 2019, 170, 967-977.	4.5	9
39	Prediction of heat transfer correlations in a low-loaded plate- fin-and-tube heat exchanger based on flow-thermal tests. Applied Thermal Engineering, 2019, 148, 641-649.	3.0	22
40	Developed Turbulent Fluid Flow in Ducts with a Circular Cross-Section. Studies in Systems, Decision and Control, 2019, , 173-256.	0.8	1
41	Determination of Mean Heat Transfer Coefficients Using the Wilson Method. Studies in Systems, Decision and Control, 2019, , 485-496.	0.8	0
42	Turbulent Fluid Flow. Studies in Systems, Decision and Control, 2019, , 129-156.	0.8	0
43	Automatic Control of the Liquid Temperature at the Car Radiator Outlet. Studies in Systems, Decision and Control, 2019, , 543-551.	0.8	0
44	Determination of Correlations for the Heat Transfer Coefficient on the Air Side Assuming a Known Heat Transfer Coefficient on the Tube Inner Surface. Studies in Systems, Decision and Control, 2019, , 497-508.	0.8	0
45	Measurements of Basic Parameters in Experimental Testing of Heat Exchangers. Studies in Systems, Decision and Control, 2019, , 449-468.	0.8	0
46	Parallel Determination of Correlations for Heat Transfer Coefficients on the Air and Water Sides. Studies in Systems, Decision and Control, 2019, , 509-523.	0.8	0
47	Determination of the Local and the Mean Heat Transfer Coefficient on the Inner Surface of a Single Tube and Finding Experimental Correlations for the Nusselt Number Calculation. Studies in Systems, Decision and Control, 2019, , 469-484.	0.8	0
48	Simulation of the operation of the car radiator with a laminar, transitional, and turbulent regime of liquid flow in the tubes. Thermal Science, 2019, 23, 1311-1321.	0.5	1
49	On-line monitoring of the fouling of the boiler heating surfaces. Thermal Science, 2019, 23, 1289-1300.	0.5	1
50	Numerical simulation of convective superheaters in steam boilers. International Journal of Thermal Sciences, 2018, 129, 320-333.	2.6	43
51	Mathematical modeling and experimental study of heat transfer in a low-duty air-cooled heat exchanger. Energy Conversion and Management, 2018, 159, 232-243.	4.4	31
52	Semi-empirical heat transfer correlations for turbulent tube flow of liquid metals. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 151-172.	1.6	3
53	Numerical modeling transient response of tubular cross flow heat exchanger. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 81-91.	1.6	3
54	Thermal performance optimization of the underground power cable system by using a modified Jaya algorithm. International Journal of Thermal Sciences, 2018, 123, 162-180.	2.6	57

#	Article	IF	CITATIONS
55	Single- and Multi-Objective Design Optimization of Plate-Fin Heat Exchangers Using Jaya Algorithm. Heat Transfer Engineering, 2018, 39, 1201-1216.	1.2	19
56	Optimum Heating of Boiler Evaporator. Heat Transfer Engineering, 2018, 39, 1217-1226.	1.2	8
57	Numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 103-117.	1.6	3
58	Selected Papers from the 9th International Conference on Computational Heat and Mass Transfer (ICCHMT2016). Heat Transfer Engineering, 2018, 39, 1101-1102.	1.2	0
59	Numerical modeling of heat transfer in the fixed-matrix regenerator working in the Electric Thermal Storage heating system. MATEC Web of Conferences, 2018, 240, 01008.	0.1	2
60	Performance of Air-Cooled Heat Exchanger with Laminar, Transitional, and Turbulent Tube Flow. MATEC Web of Conferences, 2018, 240, 02012.	0.1	0
61	Thermal stress monitoring in thick-walled pressure components based on the solutions of the inverse heat conduction problems. Journal of Thermal Stresses, 2018, 41, 1501-1524.	1.1	9
62	Theoretical modeling and experimental study of auxiliary concrete accumulator for solar heating systems. MATEC Web of Conferences, 2018, 240, 02009.	0.1	0
63	Pipeline heating and cooling. MATEC Web of Conferences, 2018, 240, 05031.	0.1	0
64	Transient heat transfer at fluid flow in a thick-walled pipeline. MATEC Web of Conferences, 2018, 240, 05032.	0.1	0
65	A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review. Energies, 2018, 11, 3104.	1.6	18
66	Monitoring of thermal stresses in pressure components based on the wall temperature measurement. Energy, 2018, 160, 500-519.	4.5	32
67	NUMERICAL INVESTIGATION OF CONJUGATE HEAT TRANSFER FROM LAMINAR WALL JET FLOW OVER A SHALLOW CAVITY. Heat Transfer Research, 2018, 49, 1151-1170.	0.9	3
68	Simple heat transfer correlations for turbulent tube flow. E3S Web of Conferences, 2017, 13, 02008.	0.2	34
69	Mathematical modeling of unsteady response of plate and fin heat exchanger to sudden change in liquid flow rate. E3S Web of Conferences, 2017, 14, 01023.	0.2	0
70	Simple power-type heat transfer correlations for turbulent pipe flow in tubes. Journal of Thermal Science, 2017, 26, 339-348.	0.9	28
71	Numerical investigation of flow and heat transfer from a block placed in a cavity subject to different inlet conditions. Progress in Computational Fluid Dynamics, 2017, 17, 385.	0.1	0
72	Shortening start-up and an extension of the power unit load range. E3S Web of Conferences, 2017, 14, 01022.	0.2	1

#	Article	IF	CITATIONS
73	Improving flexibility characteristics of 200 MW unit. Archives of Thermodynamics, 2017, 38, 75-90.	1.0	5
74	Mathematical modelling of the transient response of pipeline. Journal of Thermal Science, 2016, 25, 549-557.	0.9	23
75	Thermal Performance and Stress Monitoring of Power Boiler. , 2016, , .		0
76	Numerical model of a steam superheater with a complex shape of the tube cross section using Control Volume based Finite Element Method. Energy Conversion and Management, 2016, 118, 179-192.	4.4	27
77	A new heat transfer correlation for transition and turbulent fluid flow in tubes. International Journal of Thermal Sciences, 2016, 108, 108-122.	2.6	80
78	Heat Transfer in Turbulent Tube Flow of Liquid Metals. Procedia Engineering, 2016, 157, 148-157.	1.2	22
79	Numerical and experimental study of a solid matrix Electric Thermal Storage unit dedicated to environmentally friendly residential heating system. Energy and Buildings, 2016, 130, 747-760.	3.1	15
80	Evaporator Heating with Optimum Fluid Temperature Changes. Procedia Engineering, 2016, 157, 29-37.	1.2	7
81	Optimum heating of thick-walled pressure components assuming a quasi-steady state of temperature distribution. Journal of Thermal Science, 2016, 25, 380-388.	0.9	12
82	Heating of Components with Non-Uniform Circumferential Temperature Distribution Using the Quasi–Steady State Theory. Procedia Engineering, 2016, 157, 38-43.	1.2	0
83	A Numerical Model of Steam Pipeline. Procedia Engineering, 2016, 157, 158-162.	1.2	1
84	Numerical Modeling of Transient Operation of a Plate Fin and Tube Heat Exchanger at Transition Fluid Flow in Tubes. Procedia Engineering, 2016, 157, 163-170.	1.2	3
85	The performance analysis of a new thermal backfill material for underground power cable system. Applied Thermal Engineering, 2016, 108, 233-250.	3.0	57
86	Determining velocity and friction factor for turbulent flow in smooth tubes. International Journal of Thermal Sciences, 2016, 105, 109-122.	2.6	64
87	Computer-Aided Determination of the Air-Side Heat Transfer Coefficient and Thermal Contact Resistance for a Fin-and-Tube Heat Exchanger. , 2015, , .		2
88	Optimizing of the underground power cable bedding usingÂmomentum-type particle swarm optimization method. Energy, 2015, 92, 230-239.	4.5	30
89	Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil. Energy Conversion and Management, 2015, 95, 352-370.	4.4	93
90	Determination of start-up curves for a boiler with natural circulation based on the analysis of stress distribution in critical pressure components. Energy, 2015, 92, 153-159.	4.5	58

#	Article	IF	CITATIONS
91	Modeling of transient response of a plate fin and tube heat exchanger. International Journal of Thermal Sciences, 2015, 92, 188-198.	2.6	47
92	Mathematical modeling and control of plate fin and tube heat exchangers. Energy Conversion and Management, 2015, 96, 452-462.	4.4	52
93	Thermal simulation of superheaters taking into account the processes occurring on the side of the steam and flue gas. Fuel, 2015, 150, 75-87.	3.4	49
94	Optimization of the boiler start-up taking into account thermal stresses. Energy, 2015, 92, 160-170.	4.5	60
95	Measurement of transient fluid temperature. International Journal of Thermal Sciences, 2015, 87, 241-250.	2.6	23
96	Steady-state and transient heat transfer through fins of complex geometry. Archives of Thermodynamics, 2014, 35, 117-133.	1.0	11
97	Optimum Heating of Thick Wall Pressure Components of Steam Boilers. , 2014, , .		7
98	Modeling of Superheater Operation in a Steam Boiler. , 2014, , .		3
99	Mathematical Modeling of Cross-Flow Tube Heat Exchangers With a Complex Flow Arrangement. Heat Transfer Engineering, 2014, 35, 1334-1343.	1.2	26
100	Measurements of local heat flux to membrane water walls of combustion chambers. Fuel, 2014, 115, 70-83.	3.4	42
101	Determination of heat transfer formulas for gas flow in fin-and-tube heat exchanger with oval tubes using CFD simulations. Chemical Engineering and Processing: Process Intensification, 2014, 83, 1-11.	1.8	59
102	Thermal contact resistance in plate fin-and-tube heat exchangers, determined by experimental data and CFD simulations. International Journal of Thermal Sciences, 2014, 84, 309-322.	2.6	60
103	Fins of Rectangular and Hexagonal Geometry. , 2014, , 1658-1670.		2
104	Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation. Energy Conversion and Management, 2013, 71, 131-137.	4.4	36
105	Identification of thermal boundary conditions in heat exchangers of fluidized bed boilers. Applied Thermal Engineering, 2013, 58, 194-204.	3.0	36
106	Experimental determination of correlations for average heat transfer coefficients in heat exchangers on both fluid sides. Heat and Mass Transfer, 2013, 49, 1125-1139.	1.2	57
107	Determining Optimum Temperature Changes During Heating of Pressure Vessels With Holes. , 2013, , .		0
108	Modeling of cooling of ceramic heat accumulator. Archives of Thermodynamics, 2013, 34, 161-173.	1.0	6

#	Article	IF	CITATIONS
109	Direct and Inverse Heat Transfer Problems in Dynamics of Plate and Tube Heat Exchangers. , 2011, , .		9
110	Thermomechanical CSM analysis of a superheater tube in transient state. Archives of Thermodynamics, 2011, 32, 117-126.	1.0	1
111	Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers. Archives of Thermodynamics, 2011, 32, 17-32.	1.0	2
112	New technique of the local heat flux measurement in combustion chambers of steam boilers. Archives of Thermodynamics, 2011, 32, 103-116.	1.0	8
113	Mathematical modelling of tube heat exchangers with complex flow arrangement. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2011, 32, 7-19.	0.7	16
114	Measurements of absorbed heat flux and water-side heat transfer coefficient in water wall tubes. Archives of Thermodynamics, 2011, 32, 77-88.	1.0	2
115	Measurement of heat flux density and heat transfer coefficient. Archives of Thermodynamics, 2010, 31, 3-18.	1.0	2
116	Identification of local heat flux to membrane water-walls in steam boilers. Fuel, 2009, 88, 305-311.	3.4	63
117	Measuring transient temperature of the medium in power engineering machines and installations. Applied Thermal Engineering, 2009, 29, 3374-3379.	3.0	22
118	Slag Monitoring System for Combustion Chambers of Steam Boilers. Heat Transfer Engineering, 2009, 30, 903-911.	1.2	10
119	Simplified Analysis of Radiation Heat Exchange in Boiler Superheaters. Heat Transfer Engineering, 2009, 30, 661-669.	1.2	21
120	Tubular Type Heat Flux Meter for Monitoring Internal Scale Deposits in Large Steam Boilers. Heat Transfer Engineering, 2007, 28, 230-239.	1.2	16
121	Determination of heat transfer correlations for plate-fin-and-tube heat exchangers. Heat and Mass Transfer, 2004, 40, 809-822.	1.2	26
122	Solving Inverse Heat Transfer Problems When Using CFD Modeling. , 0, , .		1
123	The CFD Based Method for Determining Heat Transfer Correlations on Individual Rows of Plate-Fin and Tube Heat Exchangers. , 0, , .		0