
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9260297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress in smallâ€molecule donors for nonâ€fullerene allâ€smallâ€molecule organic solar cells. Nano Select, 2022, 3, 233-247.	3.7	17
2	Influence of altering chlorine substitution positions on the photovoltaic properties of small molecule donors in all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2017-2025.	5.5	12
3	é«~性能简å•结构èš(å™»å©-å−¹å−"啉)类给体å‰ä¼ææ−™. Scientia Sinica Chimica, 2022, , .	0.4	0
4	16.52% Efficiency Allâ€Polymer Solar Cells with High Tolerance of the Photoactive Layer Thickness. Advanced Materials, 2022, 34, e2108749.	21.0	63
5	Peryleneâ€diimideâ€based cathode interlayer materials for high performance organic solar cells. SusMat, 2022, 2, 243-263.	14.9	38
6	Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiolâ€Mediated Uptake. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
7	Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiolâ€Mediated Uptake. Angewandte Chemie, 2022, 134, .	2.0	1
8	Perylene-diimide derived organic photovoltaic materials. Science China Chemistry, 2022, 65, 462-485.	8.2	43
9	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	8.2	349
10	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	8.2	157
11	Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable. Nature Communications, 2022, 13, .	12.8	38
12	Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1-13.	3.8	74
13	Polymerized Smallâ€Molecule Acceptors for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 4422-4433.	13.8	318
14	Polymerized Smallâ€Molecule Acceptors for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie, 2021, 133, 4470-4481.	2.0	22
15	All annealing-free solution-processed highly flexible organic solar cells. Journal of Materials Chemistry A, 2021, 9, 5425-5433.	10.3	30
16	Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency. Nano-Micro Letters, 2021, 13, 44.	27.0	71
17	Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors. Journal of the American Chemical Society, 2021, 143, 4359-4366.	13.7	60
18	90% yield production of polymer nano-memristor for in-memory computing. Nature Communications, 2021, 12, 1984.	12.8	87

#	Article	IF	CITATIONS
19	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 19053-19057.	13.8	43
20	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 19201-19205.	2.0	2
21	Ternary All-Polymer Solar Cells with Two Synergetic Donors Enable Efficiency over 14.5%. Energy & Fuels, 2021, 35, 19045-19054.	5.1	15
22	Effects of the Center Units of Smallâ€Molecule Donors on the Morphology, Photovoltaic Performance, and Device Stability of Allâ€&mallâ€Molecule Organic Solar Cells. Solar Rrl, 2021, 5, 2100515.	5.8	10
23	A low-cost polymerized hole-transporting material for high performance planar perovskite solar cells. Applied Physics Letters, 2021, 119, .	3.3	1
24	Research Advances on Benzotriazole-based Organic Photovoltaic Materials. Acta Chimica Sinica, 2021, 79, 820.	1.4	10
25	Modulating Crystal Packing, Film Morphology, and Photovoltaic Performance of Selenophene-Containing Acceptors through a Combination of Skeleton Isomeric and Regioisomeric Strategies. ACS Applied Materials & Interfaces, 2021, 13, 50163-50175.	8.0	13
26	Effects of Alkyl Side Chains of Small Molecule Donors on Morphology and the Photovoltaic Property of All-Small-Molecule Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 54237-54245.	8.0	13
27	Metal oxide-free flexible organic solar cells with 0.1 M perchloric acid sprayed polymeric anodes. Journal of Materials Chemistry A, 2020, 8, 21007-21015.	10.3	40
28	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie, 2020, 132, 20007-20012.	2.0	16
29	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19835-19840.	13.8	105
30	Silicon and oxygen synergistic effects for the discovery of new high-performance nonfullerene acceptors. Nature Communications, 2020, 11, 5814.	12.8	29
31	Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nature Communications, 2020, 11, 2726.	12.8	467
32	Optimizing the Phase-Separated Domain Size of the Active Layer via Sequential Crystallization in All-Polymer Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 2314-2321.	4.6	19
33	Charge Separation from an Intra-Moiety Intermediate State in the High-Performance PM6:Y6 Organic Photovoltaic Blend. Journal of the American Chemical Society, 2020, 142, 12751-12759.	13.7	228
34	Understanding the Morphology of High-Performance Solar Cells Based on a Low-Cost Polymer Donor. ACS Applied Materials & Interfaces, 2020, 12, 9537-9544.	8.0	17
35	Highly Efficient Allâ€&mallâ€Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing. Advanced Materials, 2020, 32, e1908373.	21.0	162
36	Multi-length scale morphology of nonfullerene all-small molecule blends and its relation to device function in organic solar cells. Materials Chemistry Frontiers, 2019, 3, 137-144.	5.9	12

#	Article	IF	CITATIONS
37	A decacyclic indacenodithiophene-based non-fullerene electron acceptor with meta-alkyl-phenyl substitutions for polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4063-4071.	10.3	17
38	Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nature Communications, 2019, 10, 519.	12.8	231
39	Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends. Nature Communications, 2019, 10, 398.	12.8	56
40	Ring-perfluorinated non-volatile additives with a high dielectric constant lead to highly efficient and stable organic solar cells. Journal of Materials Chemistry C, 2019, 7, 4716-4724.	5.5	29
41	11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Science China Chemistry, 2019, 62, 845-850.	8.2	140
42	A Simple Approach to Prepare Chlorinated Polymer Donors with Low-Lying HOMO Level for High Performance Polymer Solar Cells. Chemistry of Materials, 2019, 31, 6558-6567.	6.7	50
43	A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 394-400.	4.9	59
44	A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9, 743.	12.8	635
45	Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells. Angewandte Chemie, 2018, 130, 4670-4674.	2.0	10
46	Dyeâ€Incorporated Polynaphthalenediimide Acceptor for Additiveâ€Free Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 4580-4584.	13.8	114
47	STFTYT: A simple and broadly absorbing small molecule for efficient organic solar cells with a very low energy loss. Organic Electronics, 2018, 57, 45-52.	2.6	6
48	High-efficiency organic solar cells based on a small-molecule donor and a low-bandgap polymer acceptor with strong absorption. Journal of Materials Chemistry A, 2018, 6, 9613-9622.	10.3	25
49	A solution-processed pillar[5]arene-based small molecule cathode buffer layer for efficient planar perovskite solar cells. Nanoscale, 2018, 10, 8088-8098.	5.6	20
50	Preparation of sub-square-meter-sized organic semiconductor films for photovoltaics applications. Nano Energy, 2018, 46, 11-19.	16.0	5
51	High performance as-cast semitransparent polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4670-4677.	10.3	41
52	Enhanced power conversion efficiency in iridium complex-based terpolymers for polymer solar cells. Npj Flexible Electronics, 2018, 2, .	10.7	84
53	Side-chain fluorination on the pyrido[3,4-b]pyrazine unit towards efficient photovoltaic polymers. Science China Chemistry, 2018, 61, 206-214.	8.2	13
54	Fine‶uning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	21.0	253

#	Article	IF	CITATIONS
55	Optimizing the conjugated side chains of quinoxaline based polymers for nonfullerene solar cells with 10.5% efficiency. Journal of Materials Chemistry A, 2018, 6, 3074-3083.	10.3	61
56	A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 6874-6881.	10.3	37
5 7	Synthesis and photovoltaic properties of 2D-conjugated polymers with alkylsilyl-substituted thieno[3,2-b]thiophene conjugated side chains. Organic Electronics, 2018, 57, 255-262.	2.6	11
58	Cyclometalated Pt complex based random terpolymers as electron acceptors for all polymer solar cells. Journal of Polymer Science Part A, 2018, 56, 105-115.	2.3	14
59	Polymer Doping for Highâ€Efficiency Perovskite Solar Cells with Improved Moisture Stability. Advanced Energy Materials, 2018, 8, 1701757.	19.5	293
60	Effect of Alkylsilyl Sideâ€Chain Structure on Photovoltaic Properties of Conjugated Polymer Donors. Advanced Energy Materials, 2018, 8, 1702324.	19.5	102
61	Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704507.	14.9	180
62	Feasible D1–A–D2–A Random Copolymers for Simultaneous Highâ€Performance Fullerene and Nonfullerene Solar Cells. Advanced Energy Materials, 2018, 8, 1702166.	19.5	61
63	Achieving efficient thick active layer and large area ternary polymer solar cells by incorporating a new fused heptacyclic non-fullerene acceptor. Journal of Materials Chemistry A, 2018, 6, 20313-20326.	10.3	34
64	Copper(I)-catalyzed benzylic C(sp3)–H geminal difunctionalization: Successive oxidative intramolecular amidation and hydroxylation. Tetrahedron, 2018, 74, 7472-7479.	1.9	7
65	Nonhalogenated Solvent-Processed All-Polymer Solar Cells over 7.4% Efficiency from Quinoxaline-Based Polymers. ACS Applied Materials & Interfaces, 2018, 10, 41318-41325.	8.0	30
66	Effects of Alkoxy and Fluorine Atom Substitution of Donor Molecules on the Morphology and Photovoltaic Performance of All Small Molecule Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 413.	3.6	19
67	Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilylâ€Thienyl Conjugated Side Chains. Advanced Materials, 2018, 30, e1706361.	21.0	154
68	High-Efficiency All Polymer Solar Cell with a Low Voltage Loss of 0.56 V. ACS Applied Energy Materials, 2018, 1, 2350-2357.	5.1	9
69	Short-axis substitution approach on ladder-type benzodithiophene-based electron acceptor toward highly efficient organic solar cells. Science China Chemistry, 2018, 61, 1405-1412.	8.2	16
70	Ultrafast Channel II process induced by a 3-D texture with enhanced acceptor order ranges for high-performance non-fullerene polymer solar cells. Energy and Environmental Science, 2018, 11, 2569-2580.	30.8	72
71	Effect of Side-Chain Engineering of Bithienylbenzodithiophene- <i>alt</i> -fluorobenzotriazole-Based Copolymers on the Thermal Stability and Photovoltaic Performance of Polymer Solar Cells. Macromolecules, 2018, 51, 6028-6036.	4.8	47
72	<i>De novo</i> design of small molecule acceptors <i>via</i> fullerene/non-fullerene hybrids for polymer solar cells. Chemical Communications, 2018, 54, 9801-9804.	4.1	13

#	Article	IF	CITATIONS
73	Effects of fused-ring regiochemistry on the properties and photovoltaic performance of n-type organic semiconductor acceptors. Journal of Materials Chemistry A, 2018, 6, 15933-15941.	10.3	25
74	All-small molecule solar cells based on donor molecule optimization with highly enhanced efficiency and stability. Journal of Materials Chemistry A, 2018, 6, 15675-15683.	10.3	55
75	Ternary polymer solar cells based-on two polymer donors with similar HOMO levels and an organic acceptor with absorption extending to 850†nm. Organic Electronics, 2018, 62, 89-94.	2.6	10
76	Asymmetric thieno[2,3-b]thiophene-based electron acceptor featuring a seven fused-ring electron donor unit as core for nonfullerene organic photovoltaics. Organic Electronics, 2018, 62, 82-88.	2.6	19
77	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie, 2018, 130, 13461-13466.	2.0	108
78	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie - International Edition, 2018, 57, 13277-13282.	13.8	166
79	Improvement of Photovoltaic Performance of Polymer Solar Cells by Rational Molecular Optimization of Organic Molecule Acceptors. Advanced Energy Materials, 2018, 8, 1800815.	19.5	36
80	Sideâ€Chain Impact on Molecular Orientation of Organic Semiconductor Acceptors: High Performance Nonfullerene Polymer Solar Cells with Thick Active Layer over 400 nm. Advanced Energy Materials, 2018, 8, 1800856.	19.5	118
81	Two new medium bandgap asymmetric copolymers based on thieno[2,3-f]benzofuran for efficient organic solar cells. Dyes and Pigments, 2017, 140, 337-345.	3.7	12
82	Development of Spiro[cyclopenta[1,2- <i>b</i> :5,4- <i>b</i> â€2]dithiophene-4,9â€2-fluorene]-Based A-Ï€-D-Ï€-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 4614-4625.	8.0	49
83	Design of a thiophene-fused benzotriazole unit as an electron acceptor to build D–A copolymers for polymer solar cells. Journal of Materials Chemistry C, 2017, 5, 2951-2957.	5.5	21
84	High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor. Advanced Energy Materials, 2017, 7, 1602215.	19.5	92
85	Controlling thermal emission of phonon by magnetic metasurfaces. Scientific Reports, 2017, 7, 41858.	3.3	23
86	Synthesis and characterization of arylenevinylenearylene–naphthalene diimide copolymers as acceptor in all–polymer solar cells. Journal of Polymer Science Part A, 2017, 55, 1757-1764.	2.3	19
87	Effect of furan π-bridge on the photovoltaic performance of D-A copolymers based on bi(alkylthio-thienyl)benzodithiophene and fluorobenzotriazole. Science China Chemistry, 2017, 60, 537-544.	8.2	27
88	Asymmetric medium bandgap copolymers and narrow bandgap small-molecule acceptor with over 7% efficiency. Organic Electronics, 2017, 45, 42-48.	2.6	13
89	An asymmetrical thieno[2,3- f]benzofuran (TBF)-based conjugated polymer for organic solar cells with high fill factor. Polymer, 2017, 114, 348-354.	3.8	15
	Orthogonal colubility in fully conjugated donor acceptor block consumers: Compatibilizers for		

Orthogonal solubility in fully conjugated donor-acceptor block copolymers: Compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0 rgBT / Crearlock 10:4f 50 57 T

#	Article	IF	CITATIONS
91	Naphthodifuran-based zigzag-type polycyclic arene with conjugated side chains for efficient photovoltaics. Physical Chemistry Chemical Physics, 2017, 19, 14289-14295.	2.8	7
92	Achieving over 10% efficiency in a new acceptor ITTC and its blends with hexafluoroquinoxaline based polymers. Journal of Materials Chemistry A, 2017, 5, 11286-11293.	10.3	102
93	Incorporation of High-Mobility and Room-Temperature-Deposited Cu _{<i>x</i>} S as a Hole Transport Layer for Efficient and Stable Organo-Lead Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700038.	5.8	51
94	Exploring High-Performance n-Type Thermoelectric Composites Using Amino-Substituted Rylene Dimides and Carbon Nanotubes. ACS Nano, 2017, 11, 5746-5752.	14.6	129
95	Hexafluoroquinoxaline Based Polymer for Nonfullerene Solar Cells Reaching 9.4% Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 18816-18825.	8.0	47
96	A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy and Environmental Science, 2017, 10, 1610-1620.	30.8	272
97	A new polymer acceptor containing naphthalene diimide and 1,3,4â€thiadiazole for allâ€polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 990-996.	2.1	15
98	Effects of alkoxy substitution on molecular structure, physicochemical and photovoltaic properties of 2D-conjugated polymers based on benzo[1,2- b :4,5- b â€2]dithiophene and fluorinated benzothiadiazole. Chemical Physics Letters, 2017, 672, 63-69.	2.6	7
99	A new fluoropyrido[3,4-b]pyrazine based polymer for efficient photovoltaics. Polymer Chemistry, 2017, 8, 2227-2234.	3.9	4
100	9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. Journal of the American Chemical Society, 2017, 139, 5085-5094.	13.7	303
101	Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 802-806.	5.9	25
102	A simple and dopant-free hole-transporting material based on (2-ethylhexyl)-9 <i>H</i> -carbazole for efficient planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 12752-12757.	5.5	37
103	Insertion of double bond π-bridges of A–D–A acceptors for high performance near-infrared polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22588-22597.	10.3	61
104	Thieno[3,2- <i>b</i>]pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 31985-31992.	8.0	161
105	Cellular Architectureâ€Based Allâ€Polymer Flexible Thinâ€Film Photodetectors with High Performance and Stability in Harsh Environment. Advanced Materials Technologies, 2017, 2, 1700185.	5.8	7
106	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 13503-13507.	13.8	468
107	Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2017, 29, 1703344.	21.0	209
108	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie, 2017, 129, 13688-13692.	2.0	51

#	Article	IF	CITATIONS
109	Isomeric Effects of Solution Processed Ladderâ€Type Nonâ€Fullerene Electron Acceptors. Solar Rrl, 2017, 1, 1700107.	5.8	44
110	Side-Chain Effects on Energy-Level Modulation and Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 34146-34152.	8.0	42
111	Crystalline Medium-Bandgap Light-Harvesting Donor Material Based on <i>β-</i> Naphthalene Asymmetric-Modified Benzodithiophene Moiety toward Efficient Polymer Solar Cells. Chemistry of Materials, 2017, 29, 8249-8257.	6.7	35
112	Modulating the Molecular Packing and Nanophase Blending via a Random Terpolymerization Strategy toward 11% Efficiency Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1701125.	19.5	98
113	Medium Bandgap Polymer Donor Based on Bi(trialkylsilylthienylâ€benzo[1,2â€b:4,5â€bâ€2]â€difuran) for High Performance Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1700746.	19.5	72
114	A New Electron Acceptor with <i>meta</i> â€Alkoxyphenyl Side Chain for Fullereneâ€Free Polymer Solar Cells with 9.3% Efficiency. Advanced Science, 2017, 4, 1700152.	11.2	40
115	All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%. Chemistry of Materials, 2017, 29, 7543-7553.	6.7	184
116	Synthesis and Photovoltaic Properties of a Series of Narrow Bandgap Organic Semiconductor Acceptors with Their Absorption Edge Reaching 900 nm. Chemistry of Materials, 2017, 29, 10130-10138.	6.7	93
117	Contribution to the reductionâ€induced fluorescence enhancement of natural organic matter: Aromatic ketones outweigh quinones. Luminescence, 2017, 32, 1528-1534.	2.9	3
118	Cyclometalated Pt complex-based random terpolymers for efficient polymer solar cells. Polymer Chemistry, 2017, 8, 4729-4737.	3.9	21
119	3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM. ACS Applied Materials & amp; Interfaces, 2017, 9, 24451-24455.	8.0	1
120	New m-alkoxy-p-fluorophenyl difluoroquinoxaline based polymers in efficient fullerene solar cells with high fill factor. Organic Electronics, 2017, 50, 7-15.	2.6	18
121	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	21.0	360
122	A Synergetic Effect of Molecular Weight and Fluorine in Allâ€Polymer Solar Cells with Enhanced Performance. Advanced Functional Materials, 2017, 27, 1603564.	14.9	92
123	Efficient Inverted Organic Solar Cells Based on a Fullerene Derivative-Modified Transparent Cathode. Materials, 2017, 10, 1064.	2.9	11
124	Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	21.0	188
125	Naphthalenediimideâ€ <i>alt</i> â€Fused Thiophene D–A Copolymers for the Application as Acceptor in Allâ€Polymer Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2785-2791.	3.3	18
126	Fully Solutionâ€Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers. Advanced Functional Materials, 2016, 26, 4543-4550.	14.9	73

#	Article	IF	CITATIONS
127	11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature Communications, 2016, 7, 13651.	12.8	917
128	An asymmetric small molecule based on thieno[2,3-f]benzofuran for efficient organic solar cells. Organic Electronics, 2016, 35, 87-94.	2.6	20
129	The effect of non-structural components and lignin on hemicellulose extraction. Bioresource Technology, 2016, 214, 755-760.	9.6	40
130	New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer. Journal of Materials Chemistry A, 2016, 4, 8724-8733.	10.3	109
131	End-Capping Effect of Quinoxalino[2,3-b′]porphyrin on Donor–Acceptor Copolymer and Improved Performance of Polymer Solar Cells. Macromolecules, 2016, 49, 3723-3732.	4.8	27
132	Solution-Processable Cathode Buffer Layer for High-Performance ITO/CuSCN-based Planar Heterojunction Perovskite Solar Cell. Electrochimica Acta, 2016, 218, 263-270.	5.2	23
133	Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%. Nano Energy, 2016, 30, 312-320.	16.0	94
134	A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset. Nano Energy, 2016, 27, 430-438.	16.0	125
135	Alkoxy substituted benzodithiophene-alt-fluorobenzotriazole copolymer as donor in non-fullerene polymer solar cells. Science China Chemistry, 2016, 59, 1317-1322.	8.2	26
136	Polymers from phenyl-substituted benzodithiophene and tetrafluoridequinoxaline with high open circuit voltage and high fill factor. Organic Electronics, 2016, 37, 287-293.	2.6	17
137	High‣fficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor. Advanced Materials, 2016, 28, 8288-8295.	21.0	247
138	Room-temperature water-vapor annealing for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 17267-17273.	10.3	58
139	Insights into the working mechanism of cathode interlayers in polymer solar cells via [(C ₈ H ₁₇) ₄ N] ₄ [SiW ₁₂ O ₄₀]. Journal of Materials Chemistry A, 2016, 4, 19189-19196.	10.3	42
140	Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 2016, 138, 15011-15018.	13.7	826
141	Two new fluorinated copolymers based on thieno[2,3-f]benzofuran for efficient polymer solar cells. RSC Advances, 2016, 6, 62923-62933.	3.6	12
142	Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%. Energy and Environmental Science, 2016, 9, 3429-3435.	30.8	170
143	Synthesis and Optoelectronic Properties of Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> â€2]dithiopheneâ€Based Copolymers with Conjugated 2â€(2â€Ethylhexyl)â€3,4â€dimethoxythiophene Side Chains. Macromolecular Chemistry and Physics, 2016, 217, 1586-1599.	2.2	9
144	Allâ€Polymer Solar Cells Based on Absorptionâ€Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Advanced Materials, 2016, 28, 1884-1890.	21.0	670

#	Article	IF	CITATIONS
145	High Performance Nanostructured Silicon–Organic Quasi <i>p</i> – <i>n</i> Junction Solar Cells <i>via</i> Low-Temperature Deposited Hole and Electron Selective Layer. ACS Nano, 2016, 10, 704-712.	14.6	74
146	Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells. Polymer Chemistry, 2016, 7, 926-932.	3.9	43
147	Synthesis and photovoltaic properties of alkylthiothienyl-substituted benzo[1,2-b:4,5-bâ€2]dithiophene D–A copolymers with different accepting units. Synthetic Metals, 2016, 211, 121-131.	3.9	17
148	A simple strategy to the side chain functionalization on the quinoxaline unit for efficient polymer solar cells. Chemical Communications, 2016, 52, 6881-6884.	4.1	79
149	Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. Journal of the American Chemical Society, 2016, 138, 4657-4664.	13.7	743
150	Indacenodithienothiophene–naphthalene diimide copolymer as an acceptor for all-polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5810-5816.	10.3	66
151	Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5890-5897.	10.3	219
152	An Indacenodithiophene–Quinoxaline Polymer Prepared by Direct Arylation Polymerization for Organic Photovoltaics. Macromolecules, 2016, 49, 527-536.	4.8	67
153	Low-Bandgap Small-Molecule Donor Material Containing Thieno[3,4- <i>b</i>]thiophene Moiety for High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3661-3668.	8.0	22
154	Organic Semiconductor Photovoltaic Materials. Lecture Notes in Quantum Chemistry II, 2015, , 165-194.	0.3	0
155	An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials, 2015, 27, 1170-1174.	21.0	3,365
156	Uncovering the role of cathode buffer layer in organic solar cells. Scientific Reports, 2015, 5, 7803.	3.3	58
157	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	19.5	144
158	Synthesis and photovoltaic properties of two new alkoxylphenyl substituted thieno[2,3-f]benzofuran based polymers. Physical Chemistry Chemical Physics, 2015, 17, 17592-17600.	2.8	22
159	A new V-shaped triphenylamine/diketopyrrolopyrrole containing donor material for small molecule organic solar cells. RSC Advances, 2015, 5, 68192-68199.	3.6	16
160	Side-chain engineering of benzodithiophene–thiophene copolymers with conjugated side chains containing the electron-withdrawing ethylrhodanine group. Journal of Materials Chemistry A, 2015, 3, 12005-12015.	10.3	25
161	Effect of fluorine substitution on the photovoltaic performance of poly(thiophene-quinoxaline) copolymers. Polymer Chemistry, 2015, 6, 8203-8213.	3.9	14
162	Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22695-22707.	10.3	26

#	Article	IF	CITATIONS
163	Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-b′]dithiophene-Based Small Molecules. ACS Applied Materials & Interfaces, 2015, 7, 25237-25246.	8.0	36
164	Synthesis and photovoltaic properties of 4,9-dithien-2′-yl-2,1,3-naphthothiadiazole-based D-A copolymers. Polymer, 2015, 79, 119-127.	3.8	7
165	Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Science China Chemistry, 2015, 58, 192-209.	8.2	334
166	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	6.7	233
167	High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8, 610-616.	30.8	587
168	The role of conjugated side chains in high performance photovoltaic polymers. Journal of Materials Chemistry A, 2015, 3, 2802-2814.	10.3	41
169	Polypyrrole: FeO _x ·ZnO nanoparticle solar cells with breakthrough open-circuit voltage prepared from relatively stable liquid dispersions. RSC Advances, 2014, 4, 58608-58614.	3.6	5
170	Synthesis and Photovoltaic Properties of a D–A Copolymer Based on the 2,3â€Di(5â€hexylthioÂphenâ€2â€yl)quinoxaline Acceptor Unit. Macromolecular Chemistry and Physics, 2014, 2 597-603.	152.2	11
171	Effects of fluorination on the properties of thieno[3,2-b]thiophene-bridged donorâ€″π–acceptor polymer semiconductors. Polymer Chemistry, 2014, 5, 502-511.	3.9	55
172	Realization of nonvolatile organic memory device without using semiconductor. Applied Physics Letters, 2014, 104, 023303.	3.3	10
173	D-A-D structured organic molecules with diketopyrrolopyrrole acceptor unit for solution-processed organic solar cells. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130009.	3.4	6
174	Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy and Environmental Science, 2014, 7, 1966.	30.8	672
175	Interface Design to Improve the Performance and Stability of Solutionâ€Processed Smallâ€Molecule Conventional Solar Cells. Advanced Energy Materials, 2014, 4, 1400816.	19.5	76
176	High open-circuit voltage polymer solar cells based on D–A copolymer of indacenodithiophene and fluorine-substituted benzotriazole. Organic Electronics, 2014, 15, 818-823.	2.6	16
177	Thiophene-Fused Benzothiadiazole: A Strong Electron-Acceptor Unit to Build D–A Copolymer for Highly Efficient Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3495-3501.	6.7	87
178	Conventional and Inverted Photovoltaic Cells Fabricated Using New Conjugated Polymer Comprising Fluorinated Benzotriazole and Benzodithiophene Derivative. Bulletin of the Korean Chemical Society, 2014, 35, 1356-1364.	1.9	4
179	All-polymer solar cells based on side-chain-isolated polythiophenes and poly(perylene) Tj ETQq1 1 0.784314 rgB1	Overlock	10 Tf 50 10
100	Amine group functionalized fullerene derivatives as cathode buffer layers for high performance		

180 Amine group functionalized fullerene derivatives as cathode buffer layers for high performan polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 9624. 10.3 69

#	Article	IF	CITATIONS
181	Synthesis and Photovoltaic Properties of D–A Copolymers Based on 11,12â€Ðifluorodibenzo[a,c]phenazine Acceptor Unit. Macromolecular Chemistry and Physics, 2013, 214, 1772-1779.	2.2	13
182	Synthesis and photovoltaic properties of a D–A copolymer of dithienosilole and fluorinated-benzotriazole. Polymer Chemistry, 2013, 4, 1467-1473.	3.9	35
183	An efficient PDPPTPT:PC61BM-based tandem polymer solar cells with a Ca/Ag/MoO3 intermediate layer. Solar Energy Materials and Solar Cells, 2013, 113, 135-139.	6.2	14
184	Poly(ethylene glycol) modified [60]fullerene as electron buffer layer for high-performance polymer solar cells. Applied Physics Letters, 2013, 102, .	3.3	39
185	One, two and three-branched triphenylamine–oligothiophene hybrids for solution-processed solar cells. Journal of Materials Chemistry A, 2013, 1, 5128.	10.3	41
186	Photovoltaic performance optimization of methyl 4-[6,6]-C61-benzoate based polymer solar cells with thermal annealing approach. Synthetic Metals, 2013, 181, 117-122.	3.9	6
187	Synthesis and Photovoltaic Properties of a Polythiophene Derivative with Triphenylamine–Vinylene Conjugated Side Chain Attaching Carbonyl end Group. Advances in Polymer Technology, 2013, 32, .	1.7	1
188	Dithienocoronene diimide based conjugated polymers as electron acceptors for all-polymer solar cells. Solar Energy Materials and Solar Cells, 2013, 112, 13-19.	6.2	35
189	Thieno[3,2- <i>b</i>]thiophene-Bridged Dâ ^{~°} π–A Polymer Semiconductor Based on Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene and Benzoxadiazole. Macromolecules, 2013, 46, 4805-4812.	4.8	66
190	Synthesis and electronic energyâ€level regulation of imideâ€fused poly(thienylene vinylene) derivatives. Journal of Polymer Science Part A, 2013, 51, 4975-4982.	2.3	8
191	Benzo[1,2â€b:4,5â€b′]dithiopheneâ€ <i>alt</i> â€terthiophene Copolymers Containing Styrylâ€Triphenylamine Chains: Synthesis and Photovoltaic Performance Optimization with Fullerene Acceptors. Macromolecular Chemistry and Physics, 2013, 214, 1081-1088.	e Side 2.2	1
192	Tunable open-circuit voltage in ternary organic solar cells. Applied Physics Letters, 2012, 101, .	3.3	56
193	Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications. Journal of Materials Chemistry, 2012, 22, 4178.	6.7	303
194	A star-shaped oligothiophene end-capped with alkyl cyanoacetate groups for solution-processed organic solar cells. Chemical Communications, 2012, 48, 9655.	4.1	70
195	Synthesis and charge-transporting properties of electron-deficient CN2–fluorene based D–A copolymers. Polymer Chemistry, 2012, 3, 2170.	3.9	24
196	Effect of Branched Side Chains on the Physicochemical and Photovoltaic Properties of Poly(3â€hexylthiophene) Isomers. Macromolecular Chemistry and Physics, 2012, 213, 2267-2274.	2.2	12
197	Side Chain Engineering of Polythiophene Derivatives with a Thienylene–Vinylene Conjugated Side Chain for Application in Polymer Solar Cells. Macromolecules, 2012, 45, 2312-2320.	4.8	50
198	Conjugated Side-Chain Isolated Polythiophene: Synthesis and Photovoltaic Application. Macromolecules, 2012, 45, 113-118.	4.8	53

#	Article	IF	CITATIONS
199	Conjugated Side-Chain-Isolated D–A Copolymers Based on Benzo[1,2- <i>b</i> :4,5- <i>b</i> à€²]dithiophene- <i>alt</i> -dithienylbenzotriazole: Synthesis and Photovoltaic Properties. Chemistry of Materials, 2012, 24, 3247-3254.	6.7	273
200	Synthesis and photovoltaic properties of alternative copolymers of benzo[1,2-b:4,5-b′]dithiophene and thiophene. Polymer Bulletin, 2012, 68, 2107-2119.	3.3	2
201	Solution-processable star-shaped photovoltaic organic molecules based on triphenylamine and benzothiadiazole with longer pi-bridge. Organic Electronics, 2012, 13, 166-172.	2.6	26
202	Highâ€Performance Inverted Polymer Solar Cells with Solutionâ€Processed Titanium Chelate as Electron ollecting Layer on ITO Electrode. Advanced Materials, 2012, 24, 1476-1481.	21.0	305
203	Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Polymer Chemistry, 2011, 2, 2900.	3.9	61
204	Synthesis and photovoltaic properties of copolymers of carbazole and thiophene with conjugated side chain containing acceptor end groups. Polymer Chemistry, 2011, 2, 1678.	3.9	37
205	Synthesis and Photovoltaic Properties of D–A Copolymers Based on Dithienosilole and Benzotriazole. Macromolecules, 2011, 44, 7632-7638.	4.8	93
206	Alkyl chain engineering on a dithieno[3,2-b:2′,3′-d]silole-alt-dithienylthiazolo[5,4-d]thiazole copolymer toward high performance bulk heterojunction solar cells. Chemical Communications, 2011, 47, 9474.	4.1	94
207	Solution-Processable Star-Shaped Molecules with Triphenylamine Core and Dicyanovinyl Endgroups for Organic Solar Cellsâ€. Chemistry of Materials, 2011, 23, 817-822.	6.7	158
208	Effect of acceptor substituents on photophysical and photovoltaic properties of triphenylamine–carbazole alternating copolymers. Synthetic Metals, 2011, 161, 1383-1389.	3.9	14
209	Low bandgap copolymer of 1,4-diketopyrrolo[3,4-c]pyrrole and thieno[3,2-b]thiophene: Synthesis and applications in polymer solar cells and field-effect transistors. Synthetic Metals, 2011, 161, 1832-1837.	3.9	12
210	D–A copolymers based on dithienosilole and phthalimide for photovoltaic materials. Polymer, 2011, 52, 5464-5470.	3.8	27
211	Copolymers of fluorene and thiophene with conjugated side chain for polymer solar cells: Effect of pendant acceptors. Journal of Polymer Science Part A, 2011, 49, 1462-1470.	2.3	33
212	Synthesis and photovoltaic properties of copolymers based on bithiophene and bithiazole. Journal of Polymer Science Part A, 2011, 49, 2746-2754.	2.3	20
213	Triphenylamine-containing linear D-A-D molecules with benzothiadiazole as acceptor unit for bulk-heterojunction organic solar cells. Organic Electronics, 2011, 12, 614-622.	2.6	53
214	Fermentation Performance and Structure Characteristics of Xanthan Produced by Xanthomonas campestris with a Glucose/Xylose Mixture. Applied Biochemistry and Biotechnology, 2010, 160, 1653-1663.	2.9	41
215	Xanthan Production on Polyurethane Foam and Its Enhancement by Air Pressure Pulsation. Applied Biochemistry and Biotechnology, 2010, 162, 2244-2258.	2.9	15
216	Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media. Polymer, 2010, 51, 3377-3386.	3.8	42

#	Article	IF	CITATIONS
217	Alternating Copolymers of Carbazole and Triphenylamine with Conjugated Side Chain Attaching Acceptor Groups: Synthesis and Photovoltaic Application. Macromolecules, 2010, 43, 9376-9383.	4.8	98
218	Synthesis and Photovoltaic Properties of Bithiazole-Based Donorâ^'Acceptor Copolymers. Macromolecules, 2010, 43, 5706-5712.	4.8	103
219	Synthesis and Photovoltaic Properties of a Copolymer of Benzo[1,2-b:4,5-bâ€2]dithiophene and Bithiazole. Macromolecules, 2010, 43, 8714-8717.	4.8	56
220	Synthesis, thermal, photoluminescent, and electroluminescent properties of a novel quaternary Eu(III) complex containing a carbazole hole-transporting functional group. Journal of Materials Science: Materials in Electronics, 2009, 20, 597-603.	2.2	9
221	Nearly monochromatic red electroluminescence from a nonconjugated polymer containing carbazole segments and phenanthroline [Eu(βâ€diketonate) ₃] moieties. Journal of Polymer Science Part A, 2009, 47, 210-221.	2.3	35
222	Synthesis of a novel β-diketone containing carbazole and 2,5-diphenyl-1,3,4-oxadiazole fragments. Russian Journal of Organic Chemistry, 2009, 45, 559-563.	0.8	9
223	Triphenylamineâ^'Fluorene Alternating Conjugated Copolymers with Pendant Acceptor Groups: Synthesis, Structureâ^'Property Relationship, and Photovoltaic Application. Macromolecules, 2009, 42, 3104-3111.	4.8	103
224	Synthesis, photoluminescent and electroluminescent properties of a novel europium(III) complex involving both hole- and electron-transporting functional groups. Synthetic Metals, 2009, 159, 72-77.	3.9	25
225	Thermal Decomposition and Dehydration Kinetics of Tetra(piperidinium) Octamolybdate Tetrahydrate in Air. Chinese Journal of Chemistry, 2008, 26, 870-874.	4.9	1
226	A soft chemistry synthesis routine for LiFePO4–C using a novel carbon source. Journal of Alloys and Compounds, 2008, 456, 461-465.	5.5	48
227	Cellular Internalization and in Vivo Tracking of Thermosensitive Luminescent Micelles Based on Luminescent Lanthanide Chelate. ACS Nano, 2008, 2, 125-133.	14.6	36
228	Energy transfer from Bi3+ sensitizing the luminescence of Eu3+ in clusters embedded into sol–gel silica glasses. Journal of Non-Crystalline Solids, 2007, 353, 2431-2435.	3.1	19
229	A simple, cheap soft synthesis routine for LiFePO4 using iron(III) raw material. Journal of Power Sources, 2007, 167, 200-205.	7.8	70
230	A new photoluminescence emission peak of ZnO–SiO2 nanocomposites and its energy transfer to Eu3+ ions. Journal of Physics and Chemistry of Solids, 2007, 68, 1359-1363.	4.0	14
231	MZI-based wavelength interrogation system with tunable-FBG. Optoelectronics Letters, 2007, 3, 368-371.	0.8	0
232	Switching properties of SrBi2Ta2O9 thin films produced by metalorganic decomposition. Applied Physics Letters, 2000, 76, 369-371.	3.3	24
233	Ultrafast Electron Transfer in All-Small-Molecule Photovoltaic Blends Promoted by Intermolecular Interactions in Cyanided Donors. Chinese Journal of Chemical Physics, 0, , .	1.3	6
234	Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells. Frontiers of Chemical Science and Engineering, 0, , 1.	4.4	0