Ming Xu

List of Publications by Citations

Source: https://exaly.com/author-pdf/9260029/ming-xu-publications-by-citations.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32
papers1,569
citations16
h-index36
g-index36
ext. papers1,836
ext. citations9.3
avg, IF4.78
L-index

#	Paper	IF	Citations
32	Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. <i>Nano Letters</i> , 2012 , 12, 1503-8	11.5	349
31	Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16446-53	16.4	176
3 0	Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. <i>Nano Research</i> , 2013 , 6, 167-173	10	155
29	Ratiometric nanothermometer in vivo based on triplet ensitized upconversion. <i>Nature Communications</i> , 2018 , 9, 2698	17.4	126
28	Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19821		102
27	3D Long-Range Triplet Migration in a Water-Stable Metal-Organic Framework for Upconversion-Based Ultralow-Power in Vivo Imaging. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5493-5499	16.4	101
26	Multi-layered mesoporous TiO2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1591-1599	13	81
25	Hierarchical SnO2He2O3 heterostructures as lithium-ion battery anodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21923		77
24	A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging. <i>Chemical Communications</i> , 2016 , 52, 13389-13392	5.8	49
23	Highly Photostable Near-IR-Excitation Upconversion Nanocapsules Based on Triplet-Triplet Annihilation for in Vivo Bioimaging Application. <i>ACS Applied Materials & Discrete Amplication and Action States and Acti</i>	-9888	47
22	Ordered Macro-/Mesoporous Anatase Films with High Thermal Stability and Crystallinity for Photoelectrocatalytic Water-Splitting. <i>Advanced Energy Materials</i> , 2014 , 4, 1301725	21.8	42
21	Hybrid Nanoclusters for Near-Infrared to Near-Infrared Upconverted Persistent Luminescence Bioimaging. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 32583-32590	9.5	42
20	Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. <i>Nature Communications</i> , 2021 , 12, 699	17.4	41
19	Direct growth of mesoporous Sn-doped TiO2 thin films on conducting substrates for lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13222	13	36
18	Unconventional 0-, 1-, and 2-dimensional single-crystalline copper sulfide nanostructures. <i>Nanoscale</i> , 2012 , 4, 1794-9	7.7	26
17	Synthesis of hierarchically nanoporous silica films for controlled drug loading and release. <i>Nanoscale</i> , 2011 , 3, 3329-33	7.7	25
16	Lifetime-based nanothermometry with ultra-long-lived luminescence. <i>Chemical Communications</i> , 2020 , 56, 10694-10697	5.8	13

LIST OF PUBLICATIONS

15	Tuning the Upconversion Efficiency and Spectrum of Upconversion Nanoparticles through Surface Decorating of an Organic Dye. <i>Inorganic Chemistry</i> , 2019 , 58, 14490-14497	5.1	11	
14	Mesoporous carbon coated molybdenum oxide nanobelts for improved lithium ion storage. <i>RSC Advances</i> , 2014 , 4, 29586-29590	3.7	10	
13	Highly efficient BODIPY-doped upconversion nanoparticles for deep-red luminescence bioimaging. <i>Chemical Communications</i> , 2021 , 57, 1518-1521	5.8	9	
12	TimeBxygen & light indicating via photooxidation mediated up-conversion. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9986-9992	7.1	8	
11	Afterglow Amplification for Fast and Sensitive Detection of Porphyria in Whole Blood. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 27991-27998	9.5	7	
10	Light-Responsive Luminescent Materials for Information Encryption Against Burst Force Attack. <i>Small</i> , 2021 , 17, e2100377	11	6	
9	Morphology-dependent vanadium oxide nanostructures grown on Ti foil for Li-ion battery. <i>Journal of Colloid and Interface Science</i> , 2014 , 432, 297-301	9.3	5	
8	Monitoring energy distribution of nonradiative energy transfer and reabsorption process in an upconversion nanoparticle detection system. <i>Journal of Luminescence</i> , 2019 , 210, 175-181	3.8	4	
7	Lanthanide-containing persistent luminescence materials with superbright red afterglow and excellent solution processability. <i>Science China Chemistry</i> , 2021 , 64, 2125	7.9	4	
6	Significantly Enhanced Afterglow Brightness via Intramolecular Energy Transfer 2021 , 3, 713-720		4	
5	Steric hindrance boosted upconversion for low-power imaging in vivo. <i>Journal of Luminescence</i> , 2020 , 218, 116837	3.8	4	
4	Afterglow Implant for Arterial Embolization and Intraoperative Imaging. <i>Chemistry - A European Journal</i> , 2021 ,	4.8	1	
3	Two-Photon Excitation-Based Imaging Postprocessing Algorithm Model for Background-Free Bioimaging. <i>Analytical Chemistry</i> , 2021 , 93, 2551-2559	7.8	1	
2	Superlong afterglow reporter for the detection of porphyria in whole blood. <i>Journal of Luminescence</i> , 2021 , 243, 118612	3.8	Ο	
1	Quantum Yield Measurements of Photochemical Reaction-Based Afterglow Luminescence Materials. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9455-9462	6.4	О	