
Sorachai Nitayaphan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials. Journal of Infectious Diseases, 2012, 206, 431-441.	4.0	273
2	Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection. PLoS ONE, 2014, 9, e87572.	2.5	248
3	COMPASS identifies T-cell subsets correlated with clinical outcomes. Nature Biotechnology, 2015, 33, 610-616.	17.5	232
4	Prospective Study of Acute HIV-1 Infection in Adults in East Africa and Thailand. New England Journal of Medicine, 2016, 374, 2120-2130.	27.0	229
5	HIV-1 Vaccine-Induced C1 and V2 Env-Specific Antibodies Synergize for Increased Antiviral Activities. Journal of Virology, 2014, 88, 7715-7726.	3.4	169
6	Safety and Immunogenicity of an HIV Subtype B and E Primeâ€Boost Vaccine Combination in HIVâ€Negative Thai Adults. Journal of Infectious Diseases, 2004, 190, 702-706.	4.0	128
7	Rare HIV-1 transmitted/founder lineages identified by deep viral sequencing contribute to rapid shifts in dominant quasispecies during acute and early infection. PLoS Pathogens, 2017, 13, e1006510.	4.7	63
8	Randomized, Double-Blind Evaluation of Late Boost Strategies for HIV-Uninfected Vaccine Recipients in the RV144 HIV Vaccine Efficacy Trial. Journal of Infectious Diseases, 2017, 215, 1255-1263.	4.0	57
9	V1V2-specific complement activating serum IgG as a correlate of reduced HIV-1 infection risk in RV144. PLoS ONE, 2017, 12, e0180720.	2.5	55
10	Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial. PLoS Computational Biology, 2015, 11, e1003973.	3.2	51
11	Machine Learning Methods Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 Vaccinees. PLoS Computational Biology, 2015, 11, e1004185.	3.2	50
12	HIV-1 infections with multiple founders are associated with higher viral loads than infections with single founders. Nature Medicine, 2015, 21, 1139-1141.	30.7	50
13	ldentification of New Regions in HIV-1 gp120 Variable 2 and 3 Loops that Bind to α4β7 Integrin Receptor. PLoS ONE, 2015, 10, e0143895.	2.5	41
14	Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection. Nature Communications, 2020, 11, 272.	12.8	38
15	Global variability of the human IgG glycome. Aging, 2020, 12, 15222-15259.	3.1	37
16	Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC-HIV in HIV-uninfected Thai volunteers: a double-blind, randomised controlled trial. Lancet HIV,the, 2020, 7, e238-e248.	4.7	33
17	HIVâ€specific antibodyâ€dependent phagocytosis matures during HIV infection. Immunology and Cell Biology, 2014, 92, 679-687.	2.3	29
18	Aggregate complexes of HIV-1 induced by multimeric antibodies. Retrovirology, 2014, 11, 78.	2.0	26

Sorachai Nitayaphan

#	Article	IF	CITATIONS
19	Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection. PLoS Pathogens, 2018, 14, e1006888.	4.7	26
20	Expansion of Inefficient HIV-Specific CD8 T Cells during Acute Infection. Journal of Virology, 2016, 90, 4005-4016.	3.4	25
21	Molecular dating and viral load growth rates suggested that the eclipse phase lasted about a week in HIV-1 infected adults in East Africa and Thailand. PLoS Pathogens, 2020, 16, e1008179.	4.7	24
22	Vaccine-Induced HIV-1 Envelope gp120 Constant Region 1-Specific Antibodies Expose a CD4-Inducible Epitope and Block the Interaction of HIV-1 gp140 with Galactosylceramide. Journal of Virology, 2014, 88, 9406-9417.	3.4	16
23	HLA class I, KIR, and genome-wide SNP diversity in the RV144 Thai phase 3 HIV vaccine clinical trial. Immunogenetics, 2014, 66, 299-310.	2.4	14
24	lgG Antibody Responses to Recombinant gp120 Proteins, gp70V1/V2 Scaffolds, and a CyclicV2 Peptide in Thai Phase I/II Vaccine Trials Using Different Vaccine Regimens. AIDS Research and Human Retroviruses, 2015, 31, 1178-1186.	1.1	14
25	Structural analysis of the unmutated ancestor of the HIV-1 envelope V2 region antibody CH58 isolated from an RV144 vaccine efficacy trial vaccinee. EBioMedicine, 2015, 2, 713-722.	6.1	13
26	Antibody to HSV gD peptide induced by vaccination does not protect against HSV-2 infection in HSV-2 seronegative women. PLoS ONE, 2017, 12, e0176428.	2.5	12
27	Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment. Viruses, 2019, 11, 607.	3.3	12
28	Monocyte-derived transcriptome signature indicates antibody-dependent cellular phagocytosis as a potential mechanism of vaccine-induced protection against HIV-1. ELife, 2021, 10, .	6.0	12
29	Protein-based, but not viral vector alone, HIV vaccine boosting drives an IgG1-biased polyfunctional humoral immune response. JCI Insight, 2020, 5, .	5.0	12
30	Expansion of Stem Cell-Like CD4 ⁺ Memory T Cells during Acute HIV-1 Infection Is Linked to Rapid Disease Progression. Journal of Virology, 2019, 93, .	3.4	11
31	HIV epidemic in Asia: optimizing and expanding vaccine development. Expert Review of Vaccines, 2012, 11, 805-819.	4.4	10
32	A novel mechanism linking memory stem cells with innate immunity in protection against HIV-1 infection. Scientific Reports, 2017, 7, 1057.	3.3	10
33	Identification of Immunodominant CD4-Restricted Epitopes Co-Located with Antibody Binding Sites in Individuals Vaccinated with ALVAC-HIV and AIDSVAX B/E. PLoS ONE, 2015, 10, e0115582.	2.5	10
34	Impact of Early Antiretroviral Treatment Initiation on Performance of Cross-Sectional Incidence Assays. AIDS Research and Human Retroviruses, 2020, 36, 583-589.	1.1	9
35	CD8 and CD4 Epitope Predictions in RV144: No Strong Evidence of a T-Cell Driven Sieve Effect in HIV-1 Breakthrough Sequences from Trial Participants. PLoS ONE, 2014, 9, e111334.	2.5	9
36	A systems approach to elucidate personalized mechanistic complexities of antibody-Fc receptor activation post-vaccination. Cell Reports Medicine, 2021, 2, 100386.	6.5	8

Sorachai Nitayaphan

#	Article	IF	CITATIONS
37	HIV-1 infections with multiple founders associate with the development of neutralization breadth. PLoS Pathogens, 2022, 18, e1010369.	4.7	5
38	Factors influencing estimates of HIV-1 infection timing using BEAST. PLoS Computational Biology, 2021, 17, e1008537.	3.2	4
39	Risk Factors for HIV sero-conversion in a high incidence cohort of men who have sex with men and transgender women in Bangkok, Thailand. EClinicalMedicine, 2021, 38, 101033.	7.1	4
40	Novel Strategy To Adapt Simian-Human Immunodeficiency Virus E1 Carrying <i>env</i> from an RV144 Volunteer to Rhesus Macaques: Coreceptor Switch and Final Recovery of a Pathogenic Virus with Exclusive R5 Tropism. Journal of Virology, 2018, 92, .	3.4	3
41	Longitudinal Analysis of Peripheral and Colonic CD161+ CD4+ T Cell Dysfunction in Acute HIV-1 Infection and Effects of Early Treatment Initiation. Viruses, 2020, 12, 1426.	3.3	3
42	Cryptic Multiple HIV-1 Infection Revealed by Early, Frequent, and Deep Sampling during Acute Infection. AIDS Research and Human Retroviruses, 2014, 30, A58-A58.	1.1	2
43	Accuracy of Clinical Diagnosis of Dengue Episodes in the RV144 HIV Vaccine Efficacy Trial in Thailand. PLoS ONE, 2015, 10, e0127998.	2.5	2
44	Limited Evidence for a Relationship between HIV-1 Glycan Shield Features in Early Infection and the Development of Neutralization Breadth. Journal of Virology, 2021, 95, e0079721.	3.4	2
45	Evaluation of Mucosal Tissue Explants as Ex Vivo Surrogates of In Vivo Vaccination of Non-human Primates (NHPs) and Humans. AIDS Research and Human Retroviruses, 2014, 30, A24-A24.	1.1	1
46	A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcÎ ³ R Complex Formation After Vaccination. Frontiers in Immunology, 2022, 13, 820148.	4.8	1
47	Immune Correlates Identified in the RV144 Vaccine Efficacy Trial Impact HIV-1 Acquisition Only in the Presence of Certain HLA Class II Genes. AIDS Research and Human Retroviruses, 2014, 30, A40-A40.	1.1	0
48	Sex Differences in Immune Variables in the RV144 Trial. AIDS Research and Human Retroviruses, 2014, 30, A191-A191.	1.1	0
49	Unique HIV Risk Factors and Prevention Needs for Transgender Women and Cisgender Men Who Have Sex with Men in Bangkok, Thailand. Transgender Health, 0, , .	2.5	0