
Xiqiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9259403/publications.pdf Version: 2024-02-01

XIOLANG LILL

#	Article	lF	CITATIONS
1	The long non-coding RNA rhabdomyosarcoma 2-associated transcript exerts anti-tumor effects on lung adenocarcinoma via ubiquitination of SOX9. Annals of Translational Medicine, 2022, 10, 10-10.	1.7	7
2	Magnetic Resonance Imagingâ€Based Radiomics Features Associated with Depth of Invasion Predicted Lymph Node Metastasis and Prognosis in Tongue Cancer. Journal of Magnetic Resonance Imaging, 2022, 56, 196-209.	3.4	20
3	Promote anti-inflammatory and angiogenesis using a hyaluronic acid-based hydrogel with miRNA-laden nanoparticles for chronic diabetic wound treatment. International Journal of Biological Macromolecules, 2021, 166, 166-178.	7.5	50
4	A Super-Enhancer Driven by FOSL1 Controls miR-21-5p Expression in Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 2021, 11, 656628.	2.8	10
5	Nearâ€Infrared II Lightâ€Triggered Robust Carbon Radical Generation for Combined Photothermal and Thermodynamic Therapy of Hypoxic Tumors. Advanced Functional Materials, 2021, 31, 2101709.	14.9	42
6	Risk factors and nomogram for predicting carotid blowout syndrome based on computed tomography angiography. Oral Diseases, 2021, , .	3.0	0
7	FOSL1 promotes metastasis of head and neck squamous cell carcinoma through super-enhancer-driven transcription program. Molecular Therapy, 2021, 29, 2583-2600.	8.2	39
8	Self-Amplification of Tumor Oxidative Stress with Degradable Metallic Complexes for Synergistic Cascade Tumor Therapy. Nano Letters, 2020, 20, 8141-8150.	9.1	171
9	MicroRNA-204-5p is a tumor suppressor and potential therapeutic target in head and neck squamous cell carcinoma. Theranostics, 2020, 10, 1433-1453.	10.0	41
10	Down-Regulation of Long Non-Coding RNA TINCR Induces Cell Dedifferentiation and Predicts Progression in Oral Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 624752.	2.8	6
11	Prognostic value of epithelialâ€mesenchymal transitionâ€inducing transcription factors in head and neck squamous cell carcinoma: A metaâ€analysis. Head and Neck, 2020, 42, 1067-1076.	2.0	29
12	Non-classical platinum-based compound 56MESS, with preferential cytotoxic effect on oral cancer cells by downregulating FACL4 expression. Die Pharmazie, 2020, 75, 494-499.	0.5	1
13	Impact of tumor budding in head and neck squamous cell carcinoma: A metaâ€analysis. Head and Neck, 2019, 41, 542-550.	2.0	48
14	The prognostic role of tumourâ€infiltrating lymphocytes in oral squamous cell carcinoma: A metaâ€analysis. Journal of Oral Pathology and Medicine, 2019, 48, 788-798.	2.7	35
15	A novel prognostic model for tongue squamous cell carcinoma based on the characteristics of tumour and its microenvironment: iBD score. Histopathology, 2019, 74, 766-779.	2.9	23
16	iRGD-decorated red shift emissive carbon nanodots for tumor targeting fluorescence imaging. Journal of Colloid and Interface Science, 2018, 509, 515-521.	9.4	95
17	Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy. Frontiers in Pharmacology, 2018, 9, 582.	3.5	26
18	Targeted nanoparticles for head and neck cancers: overview and perspectives. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1469.	6.1	15

XIQIANG LIU

#	Article	IF	CITATIONS
19	Perioperative risk factors for postoperative pneumonia after major oral cancer surgery: A retrospective analysis of 331 cases. PLoS ONE, 2017, 12, e0188167.	2.5	22
20	Interplay between ΔNp63 and miR-138-5p regulates growth, metastasis and stemness of oral squamous cell carcinoma. Oncotarget, 2017, 8, 21954-21973.	1.8	31
21	Overexpression of <i>β</i> -Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. BioMed Research International, 2016, 2016, 1-11.	1.9	41
22	Decreased miR-320a promotes invasion and metastasis of tumor budding cells in tongue squamous cell carcinoma. Oncotarget, 2016, 7, 65744-65757.	1.8	26
23	Clinicopathological features and prognostic implications of Raf kinase inhibitor protein downregulation in tongue squamous cell carcinoma. Oncology Letters, 2015, 10, 1303-1308.	1.8	3
24	Dissociation of E-cadherin/β-catenin complex by MG132 and bortezomib enhances CDDP induced cell death in oral cancer SCC-25 cells. Toxicology in Vitro, 2015, 29, 1965-1976.	2.4	7
25	Tumor budding correlates with occult cervical lymph node metastasis and poor prognosis in clinical earlyâ€stage tongue squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2015, 44, 266-272.	2.7	94
26	Beclin1 inhibits proliferation, migration and invasion in tongue squamous cell carcinoma cell lines. Oral Oncology, 2014, 50, 983-990.	1.5	43
27	Deregulation of Snai2 is associated with metastasis and poor prognosis in tongue squamous cell carcinoma. International Journal of Cancer, 2012, 130, 2249-2258.	5.1	57
28	MicroRNA-138 suppresses epithelial–mesenchymal transition in squamous cell carcinoma cell lines. Biochemical Journal, 2011, 440, 23-31.	3.7	173
29	Tumor budding correlates with poor prognosis and epithelial-mesenchymal transition in tongue squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2011, 40, 545-551.	2.7	157
30	Dendrimers-delivered short hairpin RNA targeting hTERT inhibits oral cancer cell growth in vitro and in vivo. Biochemical Pharmacology, 2011, 82, 17-23.	4.4	40
31	Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma. BMC Cancer, 2010, 10, 365.	2.6	31
32	MicroRNAâ€24 targeting RNAâ€binding protein DND1 in tongue squamous cell carcinoma. FEBS Letters, 2010, 584, 4115-4120.	2.8	76
33	Gene Expression Signatures of Lymph Node Metastasis in Oral Cancer: Molecular Characteristics and Clinical Significances. Current Cancer Therapy Reviews, 2010, 6, 294-307.	0.3	13
34	MicroRNA Profiling and Head and Neck Cancer. Comparative and Functional Genomics, 2009, 2009, 1-11.	2.0	116
35	MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Letters, 2009, 286, 217-222.	7.2	193
36	MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics and Proteomics, 2009, 6, 131-9.	2.0	99