
Maria Kirsanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9258949/publications.pdf Version: 2024-02-01

MADIA KIDSANOVA

#	Article	IF	CITATIONS
1	PDRs4All: A JWST Early Release Science Program on Radiative Feedback from Massive Stars. Publications of the Astronomical Society of the Pacific, 2022, 134, 054301.	3.1	26
2	The warm-up phase in massive star-forming cores around RCW 120. Monthly Notices of the Royal Astronomical Society, 2021, 503, 633-642.	4.4	6
3	Ethynyl Around the HII Regions S255 and S257. Astronomy Reports, 2021, 65, 488-497.	0.9	6
4	The link between gas and stars in the S254–S258 star-forming region. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4447-4464.	4.4	5
5	Dark cloud-type chemistry in photodissociation regions with moderate ultraviolet field. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3810-3829.	4.4	3
6	OrionÂBar as a window to the evolution of PAHs. Monthly Notices of the Royal Astronomical Society, 2021, 509, 800-817.	4.4	8
7	Impact of PAH photodissociation on the formation of small hydrocarbons in the Orion Bar and the horsehead PDRs. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2327-2339.	4.4	10
8	3D structure of the H <scp>ii</scp> region Sh2-235 from tunable-filter optical observations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1050-1058.	4.4	9
9	The PDR structure and kinematics around the compact H ii regions S235ÂA and S235ÂC with [C ii], [13 [O i], and HCO+ line profiles. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2651-2669.	C ii], 4.4	14
10	Survey of Molecular Emission Lines in the WB 673 Interstellar Filament. Astronomy Reports, 2020, 64, 394-405.	0.9	1
11	Molecular envelope around the HII region RCWÂ120. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5641-5650.	4.4	14
12	NH3 observations of the S235 star-forming region: Dense gas in inter-core bridges. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	5
13	The Origin of [C ii]Â158 μm Emission toward the H ii Region Complex S235. Astrophysical Journal, 2019, 882, 11.	4.5	12
14	Merged H/H2 and C+/C/CO transitions in the Orion Bar. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2525-2534.	4.4	9
15	Orion Bar as a window to evolution of small carbonaceous dust grains. Proceedings of the International Astronomical Union, 2018, 14, 400-400.	0.0	0
16	The Spectral Type of the Ionizing Stars and the Infrared Fluxes of HII Regions. Astronomy Reports, 2018, 62, 764-773.	0.9	3
17	Global photometric analysis of Galactic HII regions. Research in Astronomy and Astrophysics, 2018, 18, 091.	1.7	4
18	Gas kinematics in high-mass star-forming regions from the Perseus spiral arm. Astronomy Reports, 2017. 61. 760-774.	0.9	8

MARIA KIRSANOVA

#	Article	IF	CITATIONS
19	Infrared Morphology of Regions of Ionized Hydrogen. Astronomy Reports, 2017, 61, 1015-1030.	0.9	6
20	Dust dynamics and evolution in H ii regions – II. Effects of dynamical coupling between dust and gas. Monthly Notices of the Royal Astronomical Society, 2017, 469, 630-638.	4.4	38
21	Molecular gas in high-mass filament WB673. Open Astronomy, 2017, 26, 99-105.	0.6	8
22	Molecular emission in dense massive clumps from the star-forming regions S231–S235. Astrophysical Bulletin, 2016, 71, 208-224.	1.3	14
23	Dust dynamics and evolution in expanding H ii regions. I. Radiative drift of neutral and charged grains. Monthly Notices of the Royal Astronomical Society, 2015, 449, 440-450.	4.4	43
24	Physical conditions in star-forming regions around S235. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1593-1608.	4.4	26
25	Infrared emission and the destruction of dust in HII regions. Astronomy Reports, 2013, 57, 573-585.	0.9	47
26	UV-controlled physical and chemical structure of protoplanetary disks. Astrophysics and Space Science, 2011, 335, 33-38.	1.4	6
27	Chemodynamical evolution of gas near an expanding HII region. Astronomy Reports, 2009, 53, 611-633.	0.9	21
28	Problems of star-formation theory and prospects for submillimeter observations. Astronomy Reports, 2008, 52, 976-984.	0.9	1
29	Star formation around the Hâ€fii region Sh2-235. Monthly Notices of the Royal Astronomical Society, 2008, 388, 729-736.	4.4	40
30	How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?. Proceedings of the International Astronomical Union, 2007, 3, 81-88.	0.0	14
31	Methanol masers and star formation. Proceedings of the International Astronomical Union, 2005, 1, 174-179.	0.0	15
32	The effect of the ionization rate on the chemical composition of dense cores of dark molecular clouds. Astronomy Reports, 2004, 48, 705-715.	0.9	0