Paul M O'neill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9258507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	METABOLISM OFFLUORINE-CONTAININGDRUGS. Annual Review of Pharmacology and Toxicology, 2001, 41, 443-470.	4.2	550
2	A Medicinal Chemistry Perspective on Artemisinin and Related Endoperoxides. Journal of Medicinal Chemistry, 2004, 47, 2945-2964.	2.9	505
3	The Molecular Mechanism of Action of Artemisinin—The Debate Continues. Molecules, 2010, 15, 1705-1721.	1.7	474
4	4-Aminoquinolines—Past, present, and future; A chemical perspective. , 1998, 77, 29-58.		242
5	Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed. Insect Biochemistry and Molecular Biology, 2011, 41, 492-502.	1.2	217
6	Knowledge of the Proposed Chemical Mechanism of Action and Cytochrome P450 Metabolism of Antimalarial Trioxanes Like Artemisinin Allows Rational Design of New Antimalarial Peroxides. Accounts of Chemical Research, 2004, 37, 397-404.	7.6	214
7	Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites <i>Plasmodium falciparum</i> 3D7. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2080-2085.	3.3	209
8	Evidence for the Involvement of Carbon-centered Radicals in the Induction of Apoptotic Cell Death by Artemisinin Compounds. Journal of Biological Chemistry, 2007, 282, 9372-9382.	1.6	164
9	Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications, 2021, 12, 3061.	5.8	149
10	Antimalarial pharmacology and therapeutics of atovaquone. Journal of Antimicrobial Chemotherapy, 2013, 68, 977-985.	1.3	147
11	Generation of quinolone antimalarials targeting the <i>Plasmodium falciparum</i> mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8298-8303.	3.3	143
12	The Role of Heme and the Mitochondrion in the Chemical and Molecular Mechanisms of Mammalian Cell Death Induced by the Artemisinin Antimalarials. Journal of Biological Chemistry, 2011, 286, 987-996.	1.6	137
13	Isoquine and Related Amodiaquine Analogues:Â A New Generation of Improved 4-Aminoquinoline Antimalarials. Journal of Medicinal Chemistry, 2003, 46, 4933-4945.	2.9	130
14	Novel Short Chain Chloroquine Analogues Retain Activity Against Chloroquine Resistant K1Plasmodium falciparum. Journal of Medicinal Chemistry, 2002, 45, 4975-4983.	2.9	121
15	Functional Characterization and Target Validation of Alternative Complex I of Plasmodium falciparum Mitochondria. Antimicrobial Agents and Chemotherapy, 2006, 50, 1841-1851.	1.4	120
16	Prioritization of Antiâ€5ARSâ€Covâ€2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics. Clinical Pharmacology and Therapeutics, 2020, 108, 775-790.	2.3	118
17	Mechanism-Based Design of Parasite-Targeted Artemisinin Derivatives:  Synthesis and Antimalarial Activity of New Diamine Containing Analogues. Journal of Medicinal Chemistry, 2002, 45, 1052-1063. 	2.9	116
18	Evidence for a Common Nonâ€Heme Chelatableâ€ŀronâ€Dependent Activation Mechanism for Semisynthetic and Synthetic Endoperoxide Antimalarial Drugs. Angewandte Chemie - International Edition, 2007, 46, 6278-6283.	7.2	116

#	Article	IF	CITATIONS
19	Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. Journal of Antimicrobial Chemotherapy, 2014, 69, 1005-1016.	1.3	116
20	Identification of a 1,2,4,5â€Tetraoxane Antimalarial Drugâ€Development Candidate (RKA 182) with Superior Properties to the Semisynthetic Artemisinins. Angewandte Chemie - International Edition, 2010, 49, 5693-5697.	7.2	111
21	Synthesis, Antimalarial Activity, and Molecular Modeling of Tebuquine Analogues. Journal of Medicinal Chemistry, 1997, 40, 437-448.	2.9	105
22	A Medicinal Chemistry Perspective on 4-Aminoquinoline Antimalarial Drugs. Current Topics in Medicinal Chemistry, 2006, 6, 479-507.	1.0	104
23	Antimalarial and Antitumor Evaluation of Novel C-10 Non-Acetal Dimers of 10β-(2-Hydroxyethyl)deoxoartemisinin. Journal of Medicinal Chemistry, 2004, 47, 1290-1298.	2.9	97
24	Inhibiting Plasmodium cytochrome bc1: a complex issue. Current Opinion in Chemical Biology, 2010, 14, 440-446.	2.8	97
25	Identification, Design and Biological Evaluation of Bisaryl Quinolones Targeting <i>Plasmodium falciparum</i> Type II NADH:Quinone Oxidoreductase (PfNDH2). Journal of Medicinal Chemistry, 2012, 55, 1831-1843.	2.9	94
26	Antimalarial activity of primaquine operates via a two-step biochemical relay. Nature Communications, 2019, 10, 3226.	5.8	94
27	Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides. Nature Communications, 2019, 10, 11.	5.8	93
28	Synthesis, Antimalarial Activity, Biomimetic Iron(II) Chemistry, and in Vivo Metabolism of Novel, Potent C-10-Phenoxy Derivatives of Dihydroartemisinin. Journal of Medicinal Chemistry, 2001, 44, 58-68.	2.9	92
29	Antimalarial 4(1H)-pyridones bind to the Q _i site of cytochrome <i>bc</i> ₁ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 755-760.	3.3	90
30	The role of drug accumulation in 4-aminoquinoline antimalarial potency. Biochemical Pharmacology, 1996, 52, 723-733.	2.0	88
31	Acridinediones: Selective and Potent Inhibitors of the Malaria Parasite Mitochondrial bc1 Complex. Molecular Pharmacology, 2008, 73, 1347-1355.	1.0	85
32	Design and synthesis of orally active dispiro 1,2,4,5-tetraoxanes; synthetic antimalarials with superior activity to artemisinin. Organic and Biomolecular Chemistry, 2006, 4, 4431.	1.5	83
33	Candidate Selection and Preclinical Evaluation of <i>N</i> - <i>tert</i> Butyl Isoquine (GSK369796), An Affordable and Effective 4-Aminoquinoline Antimalarial for the 21st Century. Journal of Medicinal Chemistry, 2009, 52, 1408-1415.	2.9	80
34	Metabolism-Dependent Neutrophil Cytotoxicity of Amodiaquine: A Comparison with Pyronaridine and Related Antimalarial Drugs. Chemical Research in Toxicology, 1998, 11, 1586-1595.	1.7	79
35	Antimalarial chemotherapy: young guns or back to the future?. Trends in Parasitology, 2003, 19, 479-487.	1.5	79
36	The Effect of Fluorine Substitution on the Metabolism and Antimalarial Activity of Amodiaquine. Journal of Medicinal Chemistry, 1994, 37, 1362-1370.	2.9	78

#	Article	IF	CITATIONS
37	Two-Step Synthesis of Achiral Dispiro-1,2,4,5-tetraoxanes with Outstanding Antimalarial Activity, Low Toxicity, and High-Stability Profiles. Journal of Medicinal Chemistry, 2008, 51, 2170-2177.	2.9	78
38	Cytochrome b Mutation Y268S Conferring Atovaquone Resistance Phenotype in Malaria Parasite Results in Reduced Parasite bc1 Catalytic Turnover and Protein Expression. Journal of Biological Chemistry, 2012, 287, 9731-9741.	1.6	77
39	A Click Chemistryâ€Based Proteomic Approach Reveals that 1,2,4â€Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile. Angewandte Chemie - International Edition, 2016, 55, 6401-6405.	7.2	76
40	Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere, 2020, 254, 126779.	4.2	74
41	The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nature Communications, 2018, 9, 1693.	5.8	71
42	Co(thd)2: a superior catalyst for aerobic epoxidation and hydroperoxysilylation of unactivated alkenes: application to the synthesis of spiro-1,2,4-trioxanes. Tetrahedron Letters, 2003, 44, 8135-8138.	0.7	69
43	Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2038-2043.	1.0	64
44	Biomimetic Fe(II)-Mediated Degradation of Arteflene (Ro-42-1611). The First EPR Spin-Trapping Evidence for the Previously Postulated Secondary Carbon-Centered Cyclohexyl Radical. Journal of Organic Chemistry, 2000, 65, 1578-1582.	1.7	59
45	Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action. Journal of Medicinal Chemistry, 2016, 59, 5587-5603.	2.9	59
46	Novel, Potent, Semisynthetic Antimalarial Carba Analogues of the First-Generation 1,2,4-Trioxane Artemether. Journal of Medicinal Chemistry, 1999, 42, 5487-5493.	2.9	58
47	New 4-Aminoquinoline Mannich Base Antimalarials. 1. Effect of an Alkyl Substituent in the 5â€ ⁻ -Position of the 4â€ ⁻ -Hydroxyanilino Side Chain. Journal of Medicinal Chemistry, 1999, 42, 2747-2751.	2.9	58
48	Application of Thiolâ^'Olefin Co-oxygenation Methodology to a New Synthesis of the 1,2,4-Trioxane Pharmacophore. Organic Letters, 2004, 6, 3035-3038.	2.4	58
49	Synthesis and biological evaluation of extraordinarily potent C-10 carba artemisinin dimers against P. falciparum malaria parasites and HL-60 cancer cells. Bioorganic and Medicinal Chemistry, 2009, 17, 1325-1338.	1.4	58
50	AWZ1066S, a highly specific anti- <i>Wolbachia</i> drug candidate for a short-course treatment of filariasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1414-1419.	3.3	57
51	Design and Synthesis of Endoperoxide Antimalarial Prodrug Models. Angewandte Chemie - International Edition, 2004, 43, 4193-4197.	7.2	56
52	Synthesis, Antimalarial Activity, and Preclinical Pharmacology of a Novel Series of 4′-Fluoro and 4′-Chloro Analogues of Amodiaquine. Identification of a Suitable "Back-Up―Compound for <i>N-tert</i> -Butyl Isoquine. Journal of Medicinal Chemistry, 2009, 52, 1828-1844.	2.9	56
53	Targeting the mitochondrial electron transport chain of <i>Plasmodium falciparum:</i> new strategies towards the development of improved antimalarials for the elimination era. Future Medicinal Chemistry, 2013, 5, 1573-1591.	1.1	55
54	Regioselective Mukaiyama hydroperoxysilylation of 2-alkyl- or 2-aryl-prop-2-en-1-ols: application to a new synthesis of 1,2,4-trioxanes. Tetrahedron Letters, 2001, 42, 4569-4571.	0.7	54

#	Article	IF	CITATIONS
55	HDQ, a Potent Inhibitor of Plasmodium falciparum Proliferation, Binds to the Quinone Reduction Site of the Cytochrome bc 1 Complex. Antimicrobial Agents and Chemotherapy, 2012, 56, 3739-3747.	1.4	53
56	Modular Synthesis and in Vitro and in Vivo Antimalarial Assessment of C-10 Pyrrole Mannich Base Derivatives of Artemisinin. Journal of Medicinal Chemistry, 2010, 53, 633-640.	2.9	52
57	Design, synthesis and antimalarial/anticancer evaluation of spermidine linked artemisinin conjugates designed to exploit polyamine transporters in Plasmodium falciparum and HL-60 cancer cell lines. Bioorganic and Medicinal Chemistry, 2010, 18, 2586-2597.	1.4	51
58	Identification, Design and Biological Evaluation of Heterocyclic Quinolones Targeting <i>Plasmodium falciparum</i> Type II NADH:Quinone Oxidoreductase (PfNDH2). Journal of Medicinal Chemistry, 2012, 55, 1844-1857.	2.9	51
59	A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nature Communications, 2017, 8, 15159.	5.8	51
60	Antitumour and antimalarial activity of artemisinin–acridine hybrids. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2033-2037.	1.0	50
61	A worthy adversary for malaria. Nature, 2004, 430, 838-839.	13.7	49
62	Enantiomeric 1,2,4-Trioxanes Display Equivalent in vitro Antimalarial Activity Versus Plasmodium falciparum Malaria Parasites: Implications for the Molecular Mechanism of Action of the Artemisinins. ChemBioChem, 2005, 6, 2048-2054.	1.3	49
63	Comparison of the Reactivity of Antimalarial 1,2,4,5-Tetraoxanes with 1,2,4-Trioxolanes in the Presence of Ferrous Iron Salts, Heme, and Ferrous Iron Salts/Phosphatidylcholine. Journal of Medicinal Chemistry, 2011, 54, 6443-6455.	2.9	47
64	Current drug development portfolio for antimalarial therapies. Current Opinion in Pharmacology, 2005, 5, 473-478.	1.7	46
65	Dose prediction for repurposing nitazoxanide in SARSâ€CoVâ€2 treatment or chemoprophylaxis. British Journal of Clinical Pharmacology, 2021, 87, 2078-2088.	1.1	46
66	The biomimetic iron-mediated degradation of arteflene (Ro-42-1611),an endoperoxide antimalarial: Implications for the mechanism of antimalarial activity. Tetrahedron Letters, 1997, 38, 4263-4266.	0.7	45
67	Tetraoxane–Pyrimidine Nitrile Hybrids as Dual Stage Antimalarials. Journal of Medicinal Chemistry, 2014, 57, 4916-4923.	2.9	43
68	<i>Plasmodium</i> IspD (2-C-Methyl- <scp>d</scp> -erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target. ACS Infectious Diseases, 2015, 1, 157-167.	1.8	42
69	Small Molecule Inhibitors of Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute Pancreatitis. Journal of Medicinal Chemistry, 2016, 59, 2596-2611.	2.9	42
70	Safety assessment of peroxide antimalarials: clinical and chemical perspectives. British Journal of Clinical Pharmacology, 1998, 46, 521-529.	1.1	41
71	Anticancer activity of artemisinin-derived trioxanes. Expert Opinion on Therapeutic Patents, 2006, 16, 1665-1672.	2.4	41
72	The MEP pathway and the development of inhibitors as potential anti-infective agents. MedChemComm, 2012, 3, 418.	3.5	41

#	Article	IF	CITATIONS
73	Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney. Kidney International, 2015, 88, 1261-1273.	2.6	41
74	Novel Endoperoxide-Based Transmission-Blocking Antimalarials with Liver- and Blood-Schizontocidal Activities. ACS Medicinal Chemistry Letters, 2014, 5, 108-112.	1.3	40
75	Rational Design, Synthesis, and Biological Evaluation of Heterocyclic Quinolones Targeting the Respiratory Chain of <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2017, 60, 3703-3726.	2.9	39
76	From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorganic and Medicinal Chemistry, 2015, 23, 5120-5130.	1.4	38
77	The therapeutic potential of semi-synthetic artemisinin and synthetic endoperoxide antimalarial agents. Expert Opinion on Investigational Drugs, 2005, 14, 1117-1128.	1.9	37
78	Design and Synthesis of Irreversible Analogues of Bardoxolone Methyl for the Identification of Pharmacologically Relevant Targets and Interaction Sites. Journal of Medicinal Chemistry, 2016, 59, 2396-2409.	2.9	37
79	Therapeutic Potential of Nitazoxanide: An Appropriate Choice for Repurposing versus SARS-CoV-2?. ACS Infectious Diseases, 2021, 7, 1317-1331.	1.8	37
80	Endoperoxide Carbonyl Falcipain 2/3 Inhibitor Hybrids: Toward Combination Chemotherapy of Malaria through a Single Chemical Entity. Journal of Medicinal Chemistry, 2010, 53, 8202-8206.	2.9	35
81	Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19766-19771.	3.3	33
82	An Endoperoxideâ€Based Hybrid Approach to Deliver Falcipain Inhibitors Inside Malaria Parasites. ChemMedChem, 2013, 8, 1528-1536.	1.6	32
83	Mechanism-Based Design of Parasite-Targeted Artemisinin Derivatives:Â Synthesis and Antimalarial Activity of Benzylamino and Alkylamino Ether Analogues of Artemisinin. Journal of Medicinal Chemistry, 1996, 39, 4511-4514.	2.9	31
84	Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. EBioMedicine, 2020, 59, 102980.	2.7	31
85	Synthesis of the 8-aminoquinoline antimalarial 5-fluoroprimaquine. Tetrahedron, 1998, 54, 4615-4622.	1.0	30
86	An efficient route into synthetically challenging bridged achiral 1,2,4,5-tetraoxanes with antimalarial activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1720-1724.	1.0	30
87	Convenient Syntheses of Benzo-Fluorinated Dibenz[<i>b</i> , <i>f</i>]azepines: Rearrangements of Isatins, Acridines, and Indoles. Organic Letters, 2011, 13, 5592-5595.	2.4	30
88	Ebselen as template for stabilization of A4V mutant dimer for motor neuron disease therapy. Communications Biology, 2020, 3, 97.	2.0	30
89	Rationale Design of Biotinylated Antimalarial Endoperoxide Carbon Centered Radical Prodrugs for Applications in Proteomics. Journal of Medicinal Chemistry, 2010, 53, 4555-4559.	2.9	29
90	Phosphinic acids: current status and potential for drug discovery. Drug Discovery Today, 2019, 24, 916-929.	3.2	29

Paul M O'neill

#	Article	IF	CITATIONS
91	Second generation analogues of RKA182: synthetic tetraoxanes with outstanding in vitro and in vivo antimalarial activities. MedChemComm, 2011, 2, 661.	3.5	28
92	Potent Antimalarial 2-Pyrazolyl Quinolone <i>bc</i> ₁ (Q _i) Inhibitors with Improved Drug-like Properties. ACS Medicinal Chemistry Letters, 2018, 9, 1205-1210.	1.3	28
93	Piperidine dispiro-1,2,4-trioxane analogues. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5804-5808.	1.0	27
94	Anti-Wolbachia drugs for filariasis. Trends in Parasitology, 2021, 37, 1068-1081.	1.5	27
95	Synthesis and Antimalarial Activities of a Diverse Set of Triazoleâ€Containing Furamidine Analogues. ChemMedChem, 2011, 6, 2094-2108.	1.6	26
96	The biological evaluation of fusidic acid and its hydrogenation derivative as antimicrobial and anti-inflammatory agents. Infection and Drug Resistance, 2018, Volume 11, 1945-1957.	1.1	26
97	Antimalarial Mannoxanes: Hybrid Antimalarial Drugs with Outstanding Oral Activity Profiles and A Potential Dual Mechanism of Action. ChemMedChem, 2011, 6, 1357-1361.	1.6	25
98	Identification and prioritization of novel anti- <i>Wolbachia</i> chemotypes from screening a 10,000-compound diversity library. Science Advances, 2017, 3, eaao1551.	4.7	24
99	Study of the antimalarial activity of 4-aminoquinoline compounds against chloroquine-sensitive and chloroquine-resistant parasite strains. Journal of Molecular Modeling, 2018, 24, 237.	0.8	24
100	Identification of Novel Antimalarial Chemotypes via Chemoinformatic Compound Selection Methods for a High-Throughput Screening Program against the Novel Malarial Target, PfNDH2: Increasing Hit Rate via Virtual Screening Methods. Journal of Medicinal Chemistry, 2012, 55, 3144-3154.	2.9	23
101	X-ray and cryo-EM structures of inhibitor-bound cytochrome <i>bc</i> ₁ complexes for structure-based drug discovery. IUCrJ, 2018, 5, 200-210.	1.0	23
102	Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis—A Short Bridge between Two Distant Illnesses. Molecules, 2020, 25, 1574.	1.7	23
103	Asymmetric syntheses of enantiomeric 3-p-fluorophenyl 1,2,4-trioxane analogues of the antimalarial artemisinin. Tetrahedron Letters, 1999, 40, 9133-9136.	0.7	22
104	Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies. Medicinal Research Reviews, 2021, 41, 3062-3095.	5.0	22
105	Second-generation nitazoxanide derivatives: thiazolides are effective inhibitors of the influenza A virus. Future Medicinal Chemistry, 2018, 10, 851-862.	1.1	20
106	Diels–Alder/thiol–olefin co-oxygenation approach to antimalarials incorporating the 2,3-dioxabicyclo[3.3.1]nonane pharmacophore. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2991-2995.	1.0	19
107	Synthesis and evaluation of the antimalarial, anticancer, and caspase 3 activities of tetraoxane dimers. Bioorganic and Medicinal Chemistry, 2013, 21, 7392-7397.	1.4	19
108	A Click Chemistryâ€Based Proteomic Approach Reveals that 1,2,4â€Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile. Angewandte Chemie, 2016, 128, 6511-6515.	1.6	19

#	Article	IF	CITATIONS
109	α-Methyl-α-phenylsuccinimide ameliorates neurodegeneration in a C. elegans model of TDP-43 proteinopathy. Neurobiology of Disease, 2018, 118, 40-54.	2.1	19
110	Modification of the cyclopropyl moiety of abacavir provides insight into the structure activity relationship between HLAâ€B*57:01 binding and T ell activation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 636-647.	2.7	19
111	Carbamoyl Triazoles, Known Serine Protease Inhibitors, Are a Potent New Class of Antimalarials. Journal of Medicinal Chemistry, 2015, 58, 6448-6455.	2.9	17
112	Quinolone–Hydroxyquinoline Tautomerism in Quinolone 3-Esters. Preserving the 4-Oxoquinoline Structure To Retain Antimalarial Activity. Journal of Organic Chemistry, 2015, 80, 12244-12257.	1.7	17
113	Comparative preclinical drug metabolism and pharmacokinetic evaluation of novel 4-aminoquinoline anti-malarials. Journal of Pharmaceutical Sciences, 2009, 98, 362-377.	1.6	16
114	Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei. ELife, 2020, 9, .	2.8	16
115	Synthesis, insecticidal activities and resistance in Aedes albopictus and cytotoxicity of novel dihaloacetylated heterocyclic pyrethroids. Pest Management Science, 2020, 76, 636-644.	1.7	15
116	2-Pyridylquinolone antimalarials with improved antimalarial activity and physicochemical properties. MedChemComm, 2015, 6, 1252-1259.	3.5	14
117	Synthesis of 1,2,4-trioxepanes via application of thiol-olefin Co-oxygenation methodology. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6124-6130.	1.0	13
118	Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD. Scientific Reports, 2016, 6, 36777.	1.6	13
119	Examination of the Cytotoxic and Embryotoxic Potential and Underlying Mechanisms of Next-Generation Synthetic Trioxolane and Tetraoxane Antimalarials. Molecular Medicine, 2012, 18, 1045-1055.	1.9	12
120	Oxidative Bioactivation of Abacavir in Subcellular Fractions of Human Antigen Presenting Cells. Chemical Research in Toxicology, 2013, 26, 1064-1072.	1.7	12
121	A Quinoline Carboxamide Antimalarial Drug Candidate Uniquely Targets Plasmodia at Three Stages of the Parasite Life Cycle. Angewandte Chemie - International Edition, 2015, 54, 13504-13506.	7.2	12
122	Synthesis and structure–activity relationship of N ⁴ -benzylamine-N ² -isopropyl-quinazoline-2,4-diamines derivatives as potential antibacterial agents. RSC Advances, 2017, 7, 52227-52237.	1.7	12
123	Synthesis of Non-symmetrical Dispiro-1,2,4,5-Tetraoxanes and Dispiro-1,2,4-Trioxanes Catalyzed by Silica Sulfuric Acid. Journal of Organic Chemistry, 2021, 86, 10608-10620.	1.7	11
124	Machine learning – Predicting Ames mutagenicity of small molecules. Journal of Molecular Graphics and Modelling, 2021, 109, 108011.	1.3	11
125	The effect of fluorine substitution on the antimalarial activity of tebuquine. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 391-392.	1.0	10
126	Control and regulation of Sâ€Adenosylmethionine biosynthesis by the regulatory β subunit and quinoloneâ€based compounds. FEBS Journal, 2019, 286, 2135-2154.	2.2	9

Paul M O'neill

#	Article	IF	CITATIONS
127	Artemisinin–Polypyrrole Conjugates: Synthesis, DNA Binding Studies and Preliminary Antiproliferative Evaluation. ChemMedChem, 2013, 8, 709-718.	1.6	7
128	Synthesis of MeBmt and related derivatives via syn-selective ATH-DKR. RSC Advances, 2019, 9, 40336-40339.	1.7	7
129	Synthesis, antiviral activity, preliminary pharmacokinetics and structural parameters of thiazolide amine salts. Future Medicinal Chemistry, 2021, 13, 1731-1741.	1.1	7
130	Remdesivir–ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2. International Journal of Antimicrobial Agents, 2022, 59, 106542.	1.1	7
131	Enantioselective Synthesis and Profiling of Potent, Nonlinear Analogues of Antimalarial Tetraoxanes E209 and N205. ACS Medicinal Chemistry Letters, 2021, 12, 1077-1085.	1.3	5
132	Development of Pyrazolopyrimidine Anti- <i>Wolbachia</i> Agents for the Treatment of Filariasis. ACS Medicinal Chemistry Letters, 2021, 12, 1421-1426.	1.3	5
133	On the ordeal of quinolone preparation via cyclisation of aryl-enamines; synthesis and structure of ethyl 6-methyl-7-iodo-4-(3-iodo-4-methylphenoxy)-quinoline-3-carboxylate. Pure and Applied Chemistry, 2017, 89, 765-780.	0.9	4
134	Unprecedented Convergent Synthesis of Sugar-Functionalization of Phosphinic Acids under Metal-Free Conditions. ACS Omega, 0, , .	1.6	4
135	A novel drug for uncomplicated malaria: targeted high throughput screening (HTS) against the type II NADH:ubiquinone oxidoreductase (PfNdh2) of Plasmodium falciparum. Malaria Journal, 2010, 9, .	0.8	2
136	A Medicinal Chemistry Perspective on Artemisinin and Related Endoperoxides. ChemInform, 2004, 35, no.	0.1	0
137	Knowledge of the Proposed Chemical Mechanism of Action and Cytochrome P450 Metabolism of Antimalarial Trioxanes Like Artemisinin Allows Rational Design of New Antimalarial Peroxides. ChemInform, 2004, 35, no.	0.1	0
138	A novel drug for uncomplicated malaria: Targeted high throughput screening (HTS) against the type II NADH:ubiquinone oxidoreductase (PfNDH2) of Plasmodium falciparum. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 80.	0.5	0