
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925843/publications.pdf Version: 2024-02-01

Μανιίει Νιίδ+ες

#	Article	IF	CITATIONS
1	Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Critical Reviews in Food Science and Nutrition, 2017, 57, 3084-3103.	5.4	207
2	Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. International Dairy Journal, 2000, 10, 7-15.	1.5	129
3	Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. International Journal of Food Microbiology, 2004, 95, 225-229.	2.1	120
4	Antimicrobial activity of pediocin-producing Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese. International Dairy Journal, 2005, 15, 51-57.	1.5	108
5	Inhibition of Listeria monocytogenes by enterocin 4 during the manufacture andripening of Manchego cheese. Journal of Applied Microbiology, 1997, 83, 671-677.	1.4	103
6	Changes in chemical and rheological characteristics of La Serena ewes' milk cheese during ripening. Journal of Dairy Research, 1988, 55, 457-464.	0.7	91
7	Changes in the microflora of La Serena ewes' milk cheese during ripening. Journal of Dairy Research, 1988, 55, 449-455.	0.7	88
8	Combined Effect of High-Pressure Treatments and Bacteriocin-Producing Lactic Acid Bacteria on Inactivation of Escherichia coli O157:H7 in Raw-Milk Cheese. Applied and Environmental Microbiology, 2005, 71, 3399-3404.	1.4	87
9	Antimicrobial Activity of Nisin, Reuterin, and the Lactoperoxidase System on Listeria monocytogenes and Staphylococcus aureus in Cuajada, a Semisolid Dairy Product Manufactured in Spain. Journal of Dairy Science, 2008, 91, 70-75.	1.4	87
10	Inactivation of Gram-negative pathogens in refrigerated milk by reuterin in combination with nisin or the lactoperoxidase system. European Food Research and Technology, 2008, 227, 77-82.	1.6	86
11	Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control, 2011, 22, 457-461.	2.8	80
12	Evolution of the volatile components of ewe raw milk La Serena cheese during ripening. Correlation with flavour characteristics. Dairy Science and Technology, 2002, 82, 683-698.	0.9	80
13	Synergistic effect of nisin and the lactoperoxidase system on Listeria monocytogenes in skim milk. International Journal of Food Microbiology, 1998, 40, 35-42.	2.1	77
14	Volatile compounds in fresh meats subjected to high pressure processing: Effect of the packaging material. Meat Science, 2009, 81, 321-328.	2.7	74
15	Ewes' milk cheese: technology, microbiology and chemistry. Journal of Dairy Research, 1989, 56, 303-321.	0.7	73
16	Volatile fraction and sensory characteristics of Manchego cheese. 1. Comparison of raw and pasteurized milk cheese. Journal of Dairy Research, 2002, 69, 579-593.	0.7	73
17	Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Letters in Applied Microbiology, 2003, 37, 259-263.	1.0	71
18	Occurrence of Clostridium spp. in ovine milk and Manchego cheese with late blowing defect: Identification and characterization of isolates. International Dairy Journal, 2011, 21, 272-278.	1.5	71

#	Article	IF	CITATIONS
19	Effect of combinations of high-pressure treatment and bacteriocin-producing lactic acid bacteria on the survival of Listeria monocytogenes in raw milk cheese. International Dairy Journal, 2005, 15, 893-900.	1.5	70
20	The effect of ripening and cooking temperatures on proteolysis and lipolysis in Manchego cheese. Food Chemistry, 1986, 21, 115-123.	4.2	68
21	Microflora of Cabrales cheese: changes during maturation. Journal of Dairy Research, 1978, 45, 501-508.	0.7	65
22	Relationship between level of hydrophobic peptides and bitterness in cheese made from pasteurized and raw milk. Journal of Dairy Research, 1997, 64, 289-297.	0.7	65
23	Volatile compounds and odour characteristics of seven species of dehydrated edible seaweeds. Food Research International, 2017, 99, 1002-1010.	2.9	65
24	Effect of Wild Strains of Lactococcus lactis on the Volatile Profile and the Sensory Characteristics of Ewes' Raw Milk Cheese. Journal of Dairy Science, 2002, 85, 3164-3172.	1.4	62
25	Effect of High-Pressure Treatment on the Survival of Listeria monocytogenes Scott A in Sliced Vacuum-Packaged Iberian and Serrano Cured Hams. Journal of Food Protection, 2006, 69, 2539-2543.	0.8	61
26	Effect of vegetable and animal rennet on chemical, microbiological, rheological and sensory characteristics of La Serena cheese. Journal of Dairy Research, 1991, 58, 511-519.	0.7	59
27	A comparison between E-beam irradiation and high pressure treatment for cold-smoked salmon sanitation: microbiological aspects. Food Microbiology, 2009, 26, 224-227.	2.1	59
28	Proteolysis and formation of volatile compounds in cheese manufactured with a bacteriocin-producing adjunct culture. Journal of Dairy Research, 2001, 68, 117-129.	0.7	56
29	Volatile Compounds Produced in Cheese byPseudomonasStrains of Dairy Origin Belonging to Six Different Species. Journal of Agricultural and Food Chemistry, 2005, 53, 6835-6843.	2.4	55
30	Adsorption of nisin and enterocin 4 to polypropylene and glass surfaces and its prevention by Tween 80. Letters in Applied Microbiology, 1995, 21, 389-392.	1.0	52
31	Proteolysis in Hispánico Cheese Manufactured Using a Mesophilic Starter, a Thermophilic Starter, and Bacteriocin-ProducingLactococcus lactisSubsp. lactisINIA 415 Adjunct Culture. Journal of Agricultural and Food Chemistry, 2002, 50, 3479-3485.	2.4	52
32	Formation of volatile compounds by wild Lactococcus lactis strains isolated from raw ewes' milk cheese. International Dairy Journal, 2003, 13, 201-209.	1.5	52
33	Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high-pressure treatments and bacteriocin-producing lactic acid bacteria. Journal of Applied Microbiology, 2005, 98, 254-260.	1.4	52
34	Seasonal variation of the free fatty acids contents of Spanish ovine milk cheeses protected by a designation of origin: A comparative study. International Dairy Journal, 2006, 16, 252-261.	1.5	51
35	Caseinolysis in cheese by Enterobacteriaceae strains of dairy origin. Letters in Applied Microbiology, 2003, 37, 410-414.	1.0	50
36	Effect of single-cycle and multiple-cycle high-pressure treatments on the colour and texture of chicken breast fillets. Innovative Food Science and Emerging Technologies, 2010, 11, 441-444.	2.7	50

MANUEL NUñEZ

#	Article	IF	CITATIONS
37	Volatile Compounds Produced in Cheese by Enterobacteriaceae Strains of Dairy Origin. Journal of Food Protection, 2004, 67, 567-573.	0.8	49
38	Evolution of the volatile components of ewes raw milk Zamorano cheese. Seasonal variation. International Dairy Journal, 2004, 14, 701-711.	1.5	48
39	Enterobacteriaceae, coliforms, faecal coliforms and salmonellas in raw ewes'milk. Journal of Applied Bacteriology, 1987, 62, 321-326.	1.1	47
40	Control of Listeria monocytogenes by bacteriocins and monitoring of bacteriocin-producing lactic acid bacteria by colony hybridization in semi-hard raw milk cheese. Journal of Dairy Research, 2001, 68, 131-137.	0.7	47
41	The Effect of Liposome-Encapsulated Bacillus subtilis Neutral Proteinase on Manchego Cheese Ripening. Journal of Dairy Science, 1995, 78, 1238-1247.	1.4	46
42	Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese. International Journal of Food Microbiology, 2011, 150, 59-65.	2.1	46
43	Inactivation of <i>Salmonella</i> Enteritidis in Chicken Breast Fillets by Single-Cycle and Multiple-Cycle High Pressure Treatments. Foodborne Pathogens and Disease, 2009, 6, 577-581.	0.8	43
44	Sugars and organic acids in raw and pasteurized milk Manchego cheeses with different degrees of late blowing defect. International Dairy Journal, 2012, 25, 87-91.	1.5	43
45	Influence of physicochemical characteristics and high pressure processing on the volatile fraction of Iberian dry-cured ham. Meat Science, 2017, 131, 40-47.	2.7	43
46	PCR detection of sequences similar to the ASâ€48 structural gene in bacteriocinâ€producing enterococci. Letters in Applied Microbiology, 1997, 24, 40-42.	1.0	42
47	Inactivation of Escherichia coli O157:H7 in Ground Beef by Single-Cycle and Multiple-Cycle High-Pressure Treatments. Journal of Food Protection, 2008, 71, 811-815.	0.8	42
48	Volatile Compounds in HispÃinico Cheese Manufactured Using a Mesophilic Starter, a Thermophilic Starter, and Bacteriocin-ProducingLactococcus lactisSubsp. lactisINIA 415. Journal of Agricultural and Food Chemistry, 2002, 50, 6752-6757.	2.4	40
49	Diversity among lactococci isolated from ewes' raw milk and cheese. Journal of Applied Microbiology, 1999, 87, 849-855.	1.4	39
50	Effect of high-pressure treatments on proteolysis and texture of ewes' raw milk La Serena cheese. International Dairy Journal, 2007, 17, 1424-1433.	1.5	38
51	Volatile compounds in dry-cured Serrano ham subjected to high pressure processing. Effect of the packaging material. Meat Science, 2009, 82, 162-169.	2.7	37
52	Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham. Meat Science, 2016, 111, 130-138.	2.7	36
53	Effect of lactic starter inoculation on chemical, microbiological, rheological and sensory characteristics of La Serena cheese. Journal of Dairy Research, 1991, 58, 355-361.	0.7	35
54	Acceleration of flavour formation in cheese by a bacteriocin-producing adjunct lactic culture. Biotechnology Letters, 1997, 19, 1011-1014.	1,1	34

#	Article	IF	CITATIONS
55	Inhibitory activity of a nisin-producing starter culture on Listeria innocua in raw ewes milk Manchego cheese. International Journal of Food Microbiology, 1998, 39, 129-132.	2.1	34
56	Volatile fraction and sensory characteristics of Manchego cheese. 2. Seasonal variation. Journal of Dairy Research, 2002, 69, 595-604.	0.7	34
57	Incidence ofListeria monocytogenesand otherListeriaspecies in raw milk produced in Spain. Food Microbiology, 1998, 15, 551-555.	2.1	33
58	Evolution of the volatile components of raw ewes' milk Castellano cheese: seasonal variation. International Dairy Journal, 2004, 14, 39-46.	1.5	33
59	Volatile compounds in Spanish dry-fermented sausage †salchichón' subjected to high pressure processing. Effect of the packaging material. Meat Science, 2009, 83, 620-626.	2.7	33
60	Reducing Biogenic-Amine-Producing Bacteria, Decarboxylase Activity, and Biogenic Amines in Raw Milk Cheese by High-Pressure Treatments. Applied and Environmental Microbiology, 2013, 79, 1277-1283.	1.4	33
61	Seasonal variation of volatile compounds in ewe raw milk La Serena cheese. Dairy Science and Technology, 2002, 82, 699-711.	0.9	33
62	Psychrotrophic bacterial flora of raw ewes'milk, with particular reference to Gram negative rods. Journal of Applied Bacteriology, 1984, 57, 23-29.	1.1	32
63	Influence of lactic starter inoculation, curd heating and ripening temperature on Staphylococcus aureus behaviour in Manchego cheese. International Journal of Food Microbiology, 1988, 6, 249-257.	2.1	32
64	The effect of homogenization of whole milk, skim milk and milk fat on nisin activity against Listeria innocua. International Journal of Food Microbiology, 1999, 46, 151-157.	2.1	32
65	Effects of high-pressure processing on the volatile compounds of sliced cooked pork shoulder during refrigerated storage. Food Chemistry, 2011, 124, 749-758.	4.2	32
66	Proteolysis and biogenic amine buildup in high-pressure treated ovine milk blue-veined cheese. Journal of Dairy Science, 2013, 96, 4816-4829.	1.4	32
67	Microbiota dynamics and lactic acid bacteria biodiversity in raw goat milk cheeses. International Dairy Journal, 2016, 58, 14-22.	1.5	32
68	Cheese supplementation with five species of edible seaweeds: Effect on microbiota, antioxidant activity, colour, texture and sensory characteristics. International Dairy Journal, 2018, 84, 36-45.	1.5	32
69	Fast induction of nisin resistance in Streptococcus thermophilus INIA 463 during growth in milk. International Journal of Food Microbiology, 2004, 96, 165-172.	2.1	31
70	Seasonal variation and characterization of Micrococcaceae present in ewes' raw milk. Journal of Dairy Research, 1986, 53, 1-5.	0.7	30
71	Gredos goats' milk cheese: microbiological and chemical changes throughout ripening. Journal of Dairy Research, 1992, 59, 563-566.	0.7	30
72	Combined effect of bacteriocinâ€producing lactic acid bacteria and lactoperoxidase system activation on Listeria monocytogenes in refrigerated raw milk. Journal of Applied Microbiology, 1997, 83, 389-395.	1.4	30

#	Article	IF	CITATIONS
73	Proteolysis during ripening of Manchego cheese made from raw or pasteurized ewes' milk. Seasonal variation. Journal of Dairy Research, 2005, 72, 287-295.	0.7	30
74	Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat "lacónâ€; a cured–cooked pork meat product. Innovative Food Science and Emerging Technologies, 2014, 23, 25-32.	2.7	30
75	Effect of lactoferrin and its derivatives, high hydrostatic pressure, and their combinations, on Escherichia coli O157:H7 and Pseudomonas fluorescens in chicken filets. Innovative Food Science and Emerging Technologies, 2012, 13, 51-56.	2.7	29
76	Influence of physicochemical parameters and high pressure processing on the volatile compounds of Serrano dry-cured ham after prolonged refrigerated storage. Meat Science, 2016, 122, 101-108.	2.7	29
77	Contribution of autochthonous lactic acid bacteria to the typical flavour of raw goat milk cheeses. International Journal of Food Microbiology, 2019, 299, 8-22.	2.1	29
78	Incidence of Listeria monocytogenes and other Listeria spp. in Ewes' Raw Milk. Journal of Food Protection, 1994, 57, 571-575.	0.8	28
79	Influence of a bacteriocin-producing lactic culture on proteolysis and texture of Hispánico cheese. International Dairy Journal, 2005, 15, 145-153.	1.5	28
80	Effect of High-Pressure Treatment and a Bacteriocin-Producing Lactic Culture on the Odor and Aroma of Hispánico Cheese: Correlation of Volatile Compounds and Sensory Analysis. Journal of Agricultural and Food Chemistry, 2006, 54, 382-389.	2.4	28
81	Volatile Compounds, Odor, and Aroma of La Serena Cheese High-Pressure Treated at Two Different Stages of Ripening. Journal of Dairy Science, 2007, 90, 3627-3639.	1.4	28
82	The microbiota of eight species of dehydrated edible seaweeds from North West Spain. Food Microbiology, 2018, 70, 224-231.	2.1	27
83	Cryoprotective agents for frozen concentrated starters from non-bitterStreptococcus lactis strains. Biotechnology Letters, 1988, 10, 11-16.	1.1	26
84	Production of Volatile Compounds in Cheese by Pseudomonas fragi Strains of Dairy Origin. Journal of Food Protection, 2005, 68, 1399-1407.	0.8	26
85	Volatile compounds in ground beef subjected to high pressure processing: A comparison of dynamic headspace and solid-phase microextraction. Food Chemistry, 2011, 124, 1201-1207.	4.2	26
86	Effect of high-pressure processing and chemical composition on lipid oxidation, aminopeptidase activity and free amino acids of Serrano dry-cured ham. Meat Science, 2021, 172, 108349.	2.7	26
87	Influence of a bacteriocin-producing lactic culture on the volatile compounds, odour and aroma of Hispánico cheese. International Dairy Journal, 2005, 15, 1034-1043.	1.5	25
88	The blue discoloration of fresh cheeses: A worldwide defect associated to specific contamination by Pseudomonas fluorescens. Food Control, 2018, 86, 359-366.	2.8	25
89	Preservation of five edible seaweeds by high pressure processing: effect on microbiota, shelf life, colour, texture and antioxidant capacity. Algal Research, 2020, 49, 101938.	2.4	25
90	<i>Staphylococcus aureus</i> , thermostable nuclease and staphylococcal enterotoxins in raw ewes' milk Manchego cheese. Journal of Applied Bacteriology, 1988, 65, 29-34.	1.1	24

MANUEL NUñEZ

#	Article	IF	CITATIONS
91	Purification and characterization of an extracellular cysteine proteinase produced by <i>Micrococcus</i> sp. INIA 528. Journal of Applied Bacteriology, 1996, 81, 27-34.	1.1	24
92	Effect of Cheese Water Activity and Carbohydrate Content on the Barotolerance of Listeria monocytogenes Scott A. Journal of Food Protection, 2006, 69, 1328-1333.	0.8	24
93	Volatile compounds in low-acid fermented sausage "espetec―and sliced cooked pork shoulder subjected to high pressure processing. A comparison of dynamic headspace and solid-phase microextraction. Food Chemistry, 2012, 132, 18-26.	4.2	24
94	Activity of Goats' Milk Lactoperoxidase System on Pseudomonas fluorescens and Escherichia coli at Refrigeration Temperatures. Journal of Food Protection, 1995, 58, 1136-1138.	0.8	23
95	Effect of high-pressure-processing on lipolysis and volatile compounds of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 2014, 39, 232-239.	1.5	23
96	High pressure processing for the extension of Laminaria ochroleuca (kombu) shelf-life: A comparative study with seaweed salting and freezing. Innovative Food Science and Emerging Technologies, 2019, 52, 420-428.	2.7	23
97	Volatile compounds and odour characteristics during long-term storage of kombu seaweed (Laminaria ochroleuca) preserved by high pressure processing, freezing and salting. LWT - Food Science and Technology, 2020, 118, 108710.	2.5	23
98	Isolation of Tyrosine Decarboxylaseless Mutants of a Bacteriocin-Producing Enterococcus faecalis Strain and Their Application in Cheese. Journal of Food Protection, 1995, 58, 1222-1226.	0.8	22
99	Bactericidal Effect of Enterocin 4 on Listeria monocytogenes in a Model Dairy System. Journal of Food Protection, 1997, 60, 28-32.	0.8	22
100	Proteolysis, lipolysis, volatile compounds, texture, and flavor of Hispánico cheese made using frozen ewe milk curds pressed for different times. Journal of Dairy Science, 2010, 93, 2896-2905.	1.4	22
101	Using High-Pressure Processing for Reduction of Proteolysis and Prevention of Over-ripening of Raw Milk Cheese. Food and Bioprocess Technology, 2014, 7, 1404-1413.	2.6	22
102	The microbiological quality of milk produced in the Balearic islands. International Dairy Journal, 1995, 5, 69-74.	1.5	21
103	Effect of a bacteriocin-producing Lactococcus lactis strain and high-pressure treatment on the esterase activity and free fatty acids in Hispánico cheese. International Dairy Journal, 2007, 17, 1415-1423.	1.5	21
104	Bactericidal Activity of Lactoferrin and Its Amidated and Pepsin-Digested Derivatives against Pseudomonas fluorescens in Ground Beef and Meat Fractions. Journal of Food Protection, 2009, 72, 760-765.	0.8	21
105	Effect of High Pressure Processing on the Lipolysis, Volatile Compounds, Odour and Colour of Cheese Made from Unpasteurized Milk. Food and Bioprocess Technology, 2015, 8, 1076-1088.	2.6	21
106	High pressure processing of cheese: Lights, shadows and prospects. International Dairy Journal, 2020, 100, 104558.	1.5	21
107	Terpenoids and benzenoids in La Serena cheese made at different seasons of the year with a Cynara cardunculus extract as coagulant. International Dairy Journal, 2008, 18, 147-157.	1.5	20
108	Lack of growth of Listeria monocytogenes and Staphylococcus aureus in temperature abuse of E-beam treated ready-to-eat (RTE) cooked ham. Food Microbiology, 2010, 27, 777-782.	2.1	20

MANUEL NUñEZ

#	Article	IF	CITATIONS
109	Proteolysis, Texture, and Sensory Characteristics of Serrano Hams from Duroc and Large White Pigs during Dryâ€Curing. Journal of Food Science, 2013, 78, C416-24.	1.5	20
110	Changes in Microbiological, Chemical, Rheological and Sensory Characteristics during Ripening of Vacuum Packaged Manchego Cheese. Journal of Food Science, 1986, 51, 1451-1455.	1.5	19
111	The lactoperoxidase system in ewes' milk: levels of lactoperoxidase and thiocyanate. Letters in Applied Microbiology, 1989, 8, 147-149.	1.0	19
112	Title is missing!. Biotechnology Letters, 2001, 23, 85-89.	1.1	19
113	Evaluation of ALOA plating medium for its suitability to recover high pressure-injured Listeria monocytogenes from ground chicken meat. Letters in Applied Microbiology, 2006, 43, 313-317.	1.0	19
114	Microbiological, chemical, and sensory characteristics of Hispánico cheese manufactured using frozen high pressure treated curds made from raw ovine milk. International Dairy Journal, 2011, 21, 484-492.	1.5	19
115	Effect of lactoferrin and its derivatives against gram-positive bacteria in vitro and, combined with high pressure, in chicken breast fillets. Meat Science, 2012, 90, 71-76.	2.7	19
116	A Comparison Between E-Beam Irradiation and High-Pressure Treatment for Cold-Smoked Salmon Sanitation: Shelf-Life, Colour, Texture and Sensory Characteristics. Food and Bioprocess Technology, 2013, 6, 3177-3185.	2.6	19
117	Effect of high-pressure-processing on the microbiology, proteolysis, texture and flavour of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 2014, 37, 64-73.	1.5	19
118	Effect of High-Pressure Processing on the Microbiology, Proteolysis, Biogenic Amines and Flavour of Cheese Made from Unpasteurized Milk. Food and Bioprocess Technology, 2015, 8, 319-332.	2.6	19
119	Microbiota of Iberian dry-cured ham as influenced by chemical composition, high pressure processing and prolonged refrigerated storage. Food Microbiology, 2019, 80, 62-69.	2.1	19
120	Seaweeds in yogurt and quark supplementation: influence of five dehydrated edible seaweeds on sensory characteristics. International Journal of Food Science and Technology, 2017, 52, 431-438.	1.3	18
121	Volatile compounds and aroma of HispÃ _i nico cheese manufactured using lacticin 481-producing Lactococcus lactis subsp. lactis INIA 639 as an adjunct culture. International Dairy Journal, 2007, 17, 717-726.	1.5	17
122	Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains. International Dairy Journal, 2010, 20, 156-162.	1.5	17
123	Enhanced PFGE protocol to study the genomic diversity of Clostridium spp. isolated from Manchego cheeses with late blowing defect. Food Control, 2012, 28, 392-399.	2.8	17
124	Inactivation of Listeria monocytogenes during dry-cured ham processing. International Journal of Food Microbiology, 2020, 318, 108469.	2.1	17
125	Purification and properties of two intracellular aminopeptidases produced by Brevibacterium linens SR3. International Dairy Journal, 2000, 10, 241-248.	1.5	16
126	Microbial dynamics during the ripening of a mixed cow and goat milk cheese manufactured using frozen goat milk curd. Journal of Dairy Science, 2011, 94, 4766-4776.	1.4	16

#	Article	IF	CITATIONS
127	Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 2017, 241, 298-307.	2.1	16
128	The effect of lactic starter inoculation and storage temperature on the behaviour of Staphylococcus aureus and Enterobacter cloacae in Burgos cheese. Food Microbiology, 1986, 3, 235-242.	2.1	15
129	Purification and characterization of an extracellular tributyrin esterase produced by a cheese isolate, Micrococcus sp. INIA 528. International Dairy Journal, 2004, 14, 135-142.	1.5	15
130	Effect of Milk Inoculation with Bacteriocin-Producing Lactic Acid Bacteria on a Lactobacillus helveticus Adjunct Cheese Culture. Journal of Food Protection, 2005, 68, 1026-1033.	0.8	15
131	Effect of high-pressure-processing and modified-atmosphere-packaging on the volatile compounds and odour characteristics of sliced ready-to-eat "lacónâ€, a cured–cooked pork meat product. Innovative Food Science and Emerging Technologies, 2014, 26, 134-142.	2.7	15
132	Proteinases encapsulated in stimulated release liposomes for cheese ripening. Biotechnology Letters, 1997, 19, 345-348.	1.1	14
133	The Effect of the Cysteine Proteinase from Micrococcus sp. INIA 528 on the Ripening Process of Manchego Cheese. Enzyme and Microbial Technology, 1998, 22, 391-396.	1.6	14
134	Hydrolysis of caseins and formation of hydrophilic and hydrophobic peptides by wild Lactococcus lactis strains isolated from raw ewes' milk cheese. Journal of Applied Microbiology, 2001, 91, 907-915.	1.4	14
135	Short communication: Antimicrobial effect of lactoferrin and its amidated and pepsin-digested derivatives against Salmonella Enteritidis and Pseudomonas fluorescens. Journal of Dairy Science, 2010, 93, 3965-3969.	1.4	14
136	Streptococcus thermophilus as adjunct culture for a semi-hard cows' milk cheese. Dairy Science and Technology, 1998, 78, 501-511.	0.9	14
137	Microbiological, chemical, textural and sensory characteristics of Hispánico cheese manufactured using frozen ovine milk curds scalded at different temperatures. International Dairy Journal, 2010, 20, 344-351.	1.5	13
138	High-Pressure Treatment and Freezing of Raw Goat Milk Curd for Cheese Manufacture: Effects on Cheese Characteristics. Food and Bioprocess Technology, 2013, 6, 2820-2830.	2.6	13
139	High-pressure processing decelerates lipolysis and formation of volatile compounds in ovine milk blue-veined cheese. Journal of Dairy Science, 2013, 96, 7500-7510.	1.4	13
140	Probiotic dynamics during the fermentation of milk supplemented with seaweed extracts: The effect of milk constituents. LWT - Food Science and Technology, 2019, 107, 249-255.	2.5	13
141	Characteristics of Burgos and Hispánico cheeses manufactured with calf rennet or with recombinant chymosin. Food Chemistry, 1992, 45, 85-89.	4.2	12
142	Exogenous Sources of Listeria Contamination in Raw Ewe's Milk. Journal of Food Protection, 1996, 59, 950-954.	0.8	12
143	Cheesemaking with a Lactococcus lactis strain expressing a mutant oligopeptide binding protein as starter results in a different peptide profile. International Journal of Food Microbiology, 2005, 104, 299-307.	2.1	12
144	Microstructural, Textural and Colour Characteristics During Ripening of Hispánico Cheese Made Using High-Pressure-Treated Ovine Milk Curd. Food and Bioprocess Technology, 2013, 6, 3056-3067.	2.6	12

#	Article	IF	CITATIONS
145	Influence of compositional characteristics and high pressure processing on the volatile fraction of Iberian dry-cured ham after prolonged refrigerated storage. Innovative Food Science and Emerging Technologies, 2018, 49, 127-135.	2.7	12
146	Effect of recombinant chymosin on ewes' milk coagulation and Manchego cheese characteristics. Journal of Dairy Research, 1992, 59, 81-87.	0.7	11
147	Bacterial diversity in six species of fresh edible seaweeds submitted to high pressure processing and long-term refrigerated storage. Food Microbiology, 2021, 94, 103646.	2.1	11
148	Proteolysis, lipolysis, volatile compounds and sensory characteristics of Hispánico cheeses made using frozen curd from raw and pasteurized ewe milk. Journal of Dairy Research, 2013, 80, 51-57.	0.7	10
149	Proteolysis and Flavor Characteristics of Serrano Ham Processed under Different Ripening Temperature Conditions. Journal of Food Science, 2015, 80, C2404-12.	1.5	10
150	Lipolysis, lipid peroxidation and texture of Serrano ham processed under different ripening temperature conditions. International Journal of Food Science and Technology, 2016, 51, 1793-1800.	1.3	10
151	Effect of pH, temperature and culture medium composition on the production of an extracellular cysteine proteinase by Micrococcus sp. INIA 528. Journal of Applied Microbiology, 1997, 82, 81-86.	1.4	9
152	Proteolysis, Volatile Compounds, and Sensory Evaluation in Hispánico Cheese Manufactured with the Addition of a Thermophilic Adjunct Culture, Nisin, and Calcium Alginate-Nisin Microparticles. Journal of Dairy Science, 2003, 86, 3038-3047.	1.4	9
153	Volatile compounds in cheeses made from raw ewes' milk ripened with a lactic culture. Journal of Dairy Research, 2004, 71, 380-384.	0.7	9
154	Effect of high-pressure treatment of ewe raw milk curd at 200 and 300 MPa on characteristics of Hispánico cheese. Journal of Dairy Science, 2012, 95, 3501-3513.	1.4	9
155	Lipolysis, Lipid Peroxidation, and Color Characteristics of Serrano Hams from Duroc and Large White Pigs during Dry uring. Journal of Food Science, 2013, 78, C1659-64.	1.5	9
156	A comparative study of the Gene-Trak Listeria assay, the Listeria-Tek ELISA test and the FDA method for the detection of Listeria species in raw milk. Letters in Applied Microbiology, 1993, 17, 178-181.	1.0	8
157	Free fatty acids in model cheeses made with a Micrococcus sp. INIA 528 milk culture or with a high enzymatic activity curd of this strain. International Dairy Journal, 2006, 16, 784-787.	1.5	8
158	Lowering hydrophobic peptides and increasing free amino acids in cheese made with a Lactococcus lactis strain expressing a mutant oligopeptide binding protein. International Dairy Journal, 2007, 17, 218-225.	1.5	8
159	Volatile compounds in cheeses made with <i>Micrococcus</i> sp. INIA 528 milk culture or high enzymatic activity curd. International Journal of Dairy Technology, 2010, 63, 538-543.	1.3	8
160	Volatile compounds in high-pressure-treated dry-cured ham: A review. Meat Science, 2022, 184, 108673.	2.7	8
161	Lactoperoxidase and thiocyanate contents of goats' milk during lactation. Letters in Applied Microbiology, 1990, 11, 90-92.	1.0	7
162	Effect of the cysteine proteinase from Micrococcus sp. INIA 528 on the ripening process of Hispanico cheese. Journal of Dairy Research, 1998, 65, 621-630.	0.7	7

#	Article	IF	CITATIONS
163	Antimicrobial efficacy of lactoferrin, its amidated and pepsin-digested derivatives, and their combinations, on Escherichia coli O157:H7 and Serratia liquefaciens. Letters in Applied Microbiology, 2011, 52, 9-14.	1.0	7
164	Cheese supplementation with five species of edible seaweeds: Effect on proteolysis, lipolysis and volatile compounds. International Dairy Journal, 2019, 90, 104-113.	1.5	7
165	Volatile compounds and odour characteristics of five edible seaweeds preserved by high pressure processing: Changes during refrigerated storage. Algal Research, 2021, 53, 102137.	2.4	7
166	Goats' Milk Lactoperoxidase System Against Listeria monocytogenes. Journal of Food Protection, 1993, 56, 988-990.	0.8	7
167	Bactericidal Effect of Lactoferrin and Its Amidated and Pepsin-Digested Derivatives on Pseudomonasfluorescens: Influence of Environmental and Physiological Factors. Journal of Food Protection, 2008, 71, 2468-2474.	0.8	7
168	Defined starter system including a bacteriocin producer for the enhancement of cheese flavour. Biotechnology Letters, 1999, 13, 267-270.	0.5	6
169	Cross-Inhibition among Wild Strains of Lactococcus lactis Isolated from the Same Ecological Niche. Journal of Food Protection, 2002, 65, 205-210.	0.8	6
170	Behaviour ofStreptococcus lactisin heat treated (80 °C for 30 min) or sterilized cow's and ewe's milk. Journal of Dairy Research, 1983, 50, 357-363.	0.7	5
171	Quantitative determination of chymosin activity by thrombelastography. Food Chemistry, 1993, 47, 209-212.	4.2	5
172	Release of encapsulated proteinase from dehydration-rehydration liposomes by a co-encapsulated phospholipase. Biotechnology Letters, 1995, 17, 1051-1056.	1.1	5
173	Growth stimulation of a proteinase positive Lactococcus lactis strain by a proteinase negative Lactococcus lactis strain. International Journal of Food Microbiology, 2007, 119, 308-313.	2.1	5
174	Lipolysis of semi-hard cheese made with a lacticin 481-producingLactococcus lactisstrain and aLactobacillus helveticusstrain. Dairy Science and Technology, 2007, 87, 575-585.	0.9	5
175	Optimization of Fermentation Parameters for the Production of Concentrated Starters from Nonbitter Streptococcus lacti INIA 12. Journal of Food Science, 1988, 53, 1854-1857.	1.5	4
176	Microencapsulation of cyprosins from flowers ofCynara cardunculus L. in dehydration-rehydration liposomes. Biotechnology Letters, 1994, 16, 1031-1034.	1.1	4
177	Hydrophilic and hydrophobic peptides produced in cheese by wild Lactococcus lactis strains. Letters in Applied Microbiology, 2002, 35, 518-522.	1.0	4
178	Modification of the volatile compound profile of cheese, by aLactococcus lactisstrain expressing a mutant oligopeptide binding protein. Journal of Dairy Research, 2008, 75, 30-36.	0.7	4
179	Effect of lactic cultures on Escherichia coli in ewes' milk stored at low temperatures. International Journal of Food Microbiology, 1991, 13, 309-314.	2.1	2
180	The behaviour of Enterobacteriaceae in Manchego cheese made from raw ewes' milk treated with hydrogen peroxide, potassium nitrate or potassium nitrite. Letters in Applied Microbiology, 1993, 16, 84-86.	1.0	2

#	Article	IF	CITATIONS
181	High-Pressure Processing for the Control of Lipolysis, Volatile Compounds and Off-odours in Raw Milk Cheese. Food and Bioprocess Technology, 2013, 7, 2207.	2.6	2
182	Biogenic Amines. , 2016, , .		2
183	Prediction of clotting time for milk coagulation by mixtures of proteolytic enzymes. Food Chemistry, 1995, 52, 411-414.	4.2	1
184	Volatile Compounds in High-Pressure-Processed Pork Meat Products. , 2015, , 277-284.		1
185	"Biocontrol of Psychrotrophic Enterotoxigenic Bacillus cereus in a Nonfat Hard Cheese by an Enterococcal Strain–Producing Enterocin AS-48,―A Comment on: J. Food Prot. 67(7):1517–1521 (2004). Journal of Food Protection, 2005, 68, 448-450.	0.8	0
186	Modeling the Influence of pH, Temperature and Culture Medium Composition on the Kinetics of Growth and Cysteine Proteinase Production by Micrococcus sp. INIA 528 in Batch Culture. Food Science and Technology International, 2001, 7, 49-57.	1.1	0