
Francisco Taveira-Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9258426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Offshore pipeline buried in Indian coastal clay: buckling behaviour analysis. Ships and Offshore Structures, 2022, 17, 1565-1580.	0.9	6
2	Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region. Sustainability, 2022, 14, 2606.	1.6	1
3	Assessing the Effectiveness of a Novel WEC Concept as a Co-Located Solution for Offshore Wind Farms. Journal of Marine Science and Engineering, 2022, 10, 267.	1.2	19
4	Wave energy converters design combining hydrodynamic performance and structural assessment. Energy, 2022, 249, 123641.	4.5	6
5	Hybrid Systems for Marine Energy Harvesting. Journal of Marine Science and Engineering, 2022, 10, 633.	1.2	7
6	Review on layout optimization strategies of offshore parks for wave energy converters. Renewable and Sustainable Energy Reviews, 2022, 163, 112513.	8.2	15
7	On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 2021, 135, 110162.	8.2	100
8	Uplift and lateral buckling failure mechanisms of offshore pipes buried in normally consolidated clay. Engineering Failure Analysis, 2021, 121, 105161.	1.8	15
9	Legal framework of marine renewable energy: A review for the Atlantic region of Europe. Renewable and Sustainable Energy Reviews, 2021, 137, 110608.	8.2	28
10	Development of a numerical model of the CECO wave energy converter using computational fluid dynamics. Ocean Engineering, 2021, 219, 108416.	1.9	6
11	Proof of Concept of a Breakwater-Integrated Hybrid Wave Energy Converter Using a Composite Modelling Approach. Journal of Marine Science and Engineering, 2021, 9, 226.	1.2	8
12	Integrated Coastal Zone Management: preservation, adaptation and monitoring. Journal of Integrated Coastal Zone Management, 2021, 21, 5-9.	0.2	1
13	Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. Journal of Marine Science and Engineering, 2021, 9, 297.	1.2	30
14	Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: Performance assessment in realistic sea conditions. Nano Energy, 2021, 84, 105890.	8.2	72
15	Geometry assessment of a sloped type wave energy converter. Renewable Energy, 2021, 171, 672-686.	4.3	10
16	New developments in assessment of wave overtopping on single-layer cube armoured breakwaters based on laboratory experiments. Coastal Engineering, 2021, 166, 103883.	1.7	8
17	Analysis of the Water–Energy Nexus of Treated Wastewater Reuse at a Municipal Scale. Water (Switzerland), 2021, 13, 1911.	1.2	5
18	Hydraulic and Structural Assessment of a Rubble-Mound Breakwater with a Hybrid Wave Energy Converter. Journal of Marine Science and Engineering, 2021, 9, 922.	1.2	8

#	Article	IF	CITATIONS
19	Influence of platform design and power take-off characteristics on the performance of the E-Motions wave energy converter. Energy Conversion and Management, 2021, 244, 114481.	4.4	16
20	Novel time-efficient approach to calibrate VARANS-VOF models for simulation of wave interaction with porous structures using Artificial Neural Networks. Ocean Engineering, 2021, 235, 109375.	1.9	6
21	Damage evolution in single-layer cube armoured breakwaters with a regular placement pattern. Coastal Engineering, 2021, 169, 103943.	1.7	10
22	A Novel 2-D Point Absorber Numerical Modelling Method. Inventions, 2021, 6, 75.	1.3	1
23	Recent work and prospective analysis on offshore structures and marine energy harvesting at the Faculty of Engineering of the University of Porto. IOP Conference Series: Materials Science and Engineering, 2021, 1201, 012043.	0.3	0
24	Sensitivity of OWC performance to air compressibility. Renewable Energy, 2020, 145, 1334-1347.	4.3	43
25	Overview of Large-Scale Smoothed Particle Hydrodynamics Modeling of Dam Hydraulics. Journal of Hydraulic Engineering, 2020, 146, .	0.7	7
26	Combined solutions to reduce scour around complex foundations: an experimental study. Marine Systems and Ocean Technology, 2020, 15, 81-93.	0.5	11
27	Proof-of-concept study on a wave energy converter based on the roll oscillations of multipurpose offshore floating platforms. Energy Conversion and Management, 2020, 224, 113363.	4.4	16
28	Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives. Energy and Environmental Science, 2020, 13, 2657-2683.	15.6	195
29	Single-layer cube armoured breakwaters: Critical review and technical challenges. Ocean Engineering, 2020, 216, 108042.	1.9	9
30	Wave energy flux variability and trend along the United Arab Emirates coastline based on a 40-year hindcast. Renewable Energy, 2020, 160, 1194-1205.	4.3	10
31	Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter. Energy, 2020, 213, 118845.	4.5	22
32	Wave Energy Converter Power Take-Off System Scaling and Physical Modelling. Journal of Marine Science and Engineering, 2020, 8, 632.	1.2	23
33	Assessment of the potential of combining wave and solar energy resources to power supply worldwide offshore oil and gas platforms. Energy Conversion and Management, 2020, 223, 113299.	4.4	40
34	Large Scale Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current Conditions. Journal of Marine Science and Engineering, 2020, 8, 417.	1.2	24
35	A methodology for data gap filling in wave records using Artificial Neural Networks. Applied Ocean Research, 2020, 98, 102109.	1.8	28
36	On the Development of an Offshore Version of the CECO Wave Energy Converter. Energies, 2020, 13, 1036.	1.6	16

Francisco Taveira-Pinto

#	Article	IF	CITATIONS
37	Hydrodynamic optimization of the geometry of a sloped-motion wave energy converter. Ocean Engineering, 2020, 199, 107046.	1.9	29
38	Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater. Energies, 2020, 13, 236.	1.6	31
39	Extended characterization of damage in rubble mound scour protections. Coastal Engineering, 2020, 158, 103671.	1.7	28
40	Preface: Advanced Research on Offshore Structures and Foundation Design: Part 2. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2020, 173, 96-99.	1.4	19
41	Nota Editorial - Gestão e planeamento integrado das zonas costeiras da CPLP - Parte 1. Journal of Integrated Coastal Zone Management, 2020, 20, 85-87.	0.2	2
42	Anthropogenic influences on Integrated Coastal Zone Management. Journal of Integrated Coastal Zone Management, 2020, 20, 215-217.	0.2	2
43	Nota Editorial - Gestão e planeamento integrado das zonas costeiras da CPLP - Parte 2. Journal of Integrated Coastal Zone Management, 2020, 20, 157-160.	0.2	1
44	Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS Project. Energies, 2019, 12, 1709.	1.6	23
45	A review of reliability analysis of offshore scour protections. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2019, 172, 104-117.	1.4	16
46	Dam spillways and the SPH method: two case studies in Portugal. Journal of Applied Water Engineering and Research, 2019, 7, 228-245.	1.0	8
47	Experimental Assessment of the Performance of CECO Wave Energy Converter in Irregular Waves. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141, .	0.6	2
48	Electricity supply to offshore oil and gas platforms from renewable ocean wave energy: Overview and case study analysis. Energy Conversion and Management, 2019, 186, 556-569.	4.4	63
49	Experimental Study of a Hybrid Wave Energy Converter Integrated in a Harbor Breakwater. Journal of Marine Science and Engineering, 2019, 7, 33.	1.2	31
50	The CECO wave energy converter: Recent developments. Renewable Energy, 2019, 139, 368-384.	4.3	41
51	Brief review on the limit state function of dynamic scour protections. IOP Conference Series: Materials Science and Engineering, 2019, 700, 012027.	0.3	1
52	Probabilistic Comparison of Static and Dynamic Failure Criteria of Scour Protections. Journal of Marine Science and Engineering, 2019, 7, 400.	1.2	7
53	Editorial: Advanced research on offshore structures and foundation design: part 1. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2019, 172, 118-123.	1.4	28
54	Statistical description and modelling of extreme ocean wave conditions. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2019, 172, 124-132.	1.4	23

#	Article	IF	CITATIONS
55	Assessment of damping coefficients of power take-off systems of wave energy converters: A hybrid approach. Energy, 2019, 169, 1022-1038.	4.5	21
56	Reliability assessment of offshore dynamic scour protections using copulas. Wind Engineering, 2019, 43, 506-538.	1.1	20
57	Probabilistic design and reliability analysis of scour protections for offshore windfarms. Engineering Failure Analysis, 2018, 91, 291-305.	1.8	32
58	Performance assessment of the CECO wave energy converter: Water depth influence. Renewable Energy, 2018, 117, 341-356.	4.3	21
59	The Wave Energy Converter CECO: Current Status and Future Perspectives. Proceedings (mdpi), 2018, 2,	0.2	0
60	Measuring damage in physical model tests of rubble mounds. , 2018, , .		2
61	Experimental Assessment of the Performance of CECO Wave Energy Converter in Irregular Waves. , 2018, , .		1
62	Physical modelling of dynamic scour protections: analysis of the damage number. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2018, 171, 11-24.	1.4	12
63	Effects of the PTO inclination on the performance of the CECO wave energy converter. Marine Structures, 2018, 61, 452-466.	1.6	21
64	Asymmetric copula–based distribution models for met-ocean data in offshore wind engineering applications. Wind Engineering, 2018, 42, 304-334.	1.1	46
65	RANS-VOF modelling of the hydraulic performance of the LOWREB caisson. Coastal Engineering, 2018, 140, 161-174.	1.7	14
66	Assessment of the power conversion of wave energy converters based on experimental tests. Energy Conversion and Management, 2018, 173, 692-703.	4.4	18
67	Optimization of wave energy converters in the OPWEC project. , 2018, , 657-665.		0
68	Experimental study of two mooring systems for wave energy converters. , 2018, , 667-676.		0
69	Influence of the power take-off characteristics on the performance of CECO wave energy converter. Energy, 2017, 120, 686-697.	4.5	36
70	Influence of the wave climate seasonality on the performance of a wave energy converter: A case study. Energy, 2017, 135, 303-316.	4.5	20
71	Numerical modelling of the CECO wave energy converter. Renewable Energy, 2017, 113, 202-210.	4.3	32
72	Experimental study of the hydraulic efficiency of a novel perforated-wall caisson concept, the LOWREB. Coastal Engineering, 2017, 126, 69-80.	1.7	12

#	Article	IF	CITATIONS
73	NUMERICAL MODELLING AND POWER TAKE OFF CHARACTERIZATION OF A WAVE ENERGY CONVERTER WITH BOUNDARY ELEMENT METHOD. Coastal Engineering Proceedings, 2017, , 27.	0.1	1
74	Experimental investigation of mooring configurations for wave energy converters. International Journal of Marine Energy, 2016, 15, 56-67.	1.8	36
75	An experimental technique to track mooring cables in small scale models using image processing. Ocean Engineering, 2016, 111, 439-448.	1.9	2
76	Experimental evaluation of the effect of wave focusing walls on the performance of the Sea-wave Slot-cone Generator. Energy Conversion and Management, 2016, 110, 165-175.	4.4	24
77	Design of scour protections and structural reliability techniques. , 2016, , 527-532.		2
78	Galgamento de uma estrutura portuária protegida por um quebra-mar submerso: o caso do porto de Leixões, Portugal. Journal of Integrated Coastal Zone Management, 2016, 16, 121-131.	0.2	1
79	Experimental study of a new low reflection breakwater. , 2016, , 1159-1166.		0
80	Numerical simulation and validation of CECO wave energy converter. , 2016, , 254-260.		0
81	CECO wave energy converter: Experimental proof of concept. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	28
82	Preface to Special Topic: Marine Renewable Energy. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	33
83	Performance of submerged nearshore sand-filled geosystems for coastal protection. Coastal Engineering, 2015, 95, 147-159.	1.7	13
84	Harnessing the kinetic and potential wave energy: Design and development of a new wave energy converter. , 2015, , 367-374.		2
85	A high resolution geospatial database for wave energy exploitation. Energy, 2014, 68, 572-583.	4.5	48
86	Morphological and statistical analysis of the impact of breakwaters under construction on a sand spit area (Douro River estuary). Journal of Coastal Conservation, 2014, 18, 177-191.	0.7	10
87	Experimental evaluation of the tension mooring effect on the response of moored ships. Coastal Engineering, 2014, 85, 60-71.	1.7	36
88	A comparative study of greywater from domestic and public buildings. Water Science and Technology: Water Supply, 2014, 14, 135-141.	1.0	6
89	Feasibility of a Dynamically Stable Rock Armour Layer Scour Protection for Offshore Wind Farms. , 2014, , .		8
90	Analysis of different criteria to size rainwater storage tanks using detailed methods. Resources, Conservation and Recycling, 2013, 71, 1-6.	5.3	70

#	Article	IF	CITATIONS
91	Experimental study of solutions to reduce downtime problems in ocean facing ports: the Port of Leixões, Portugal, case study. Journal of Applied Water Engineering and Research, 2013, 1, 80-90.	1.0	10
92	DGPS based methods to obtain beach cusp dimensions Journal of Coastal Research, 2013, 65, 541-546.	0.1	2
93	Real-Time Tracking System for a Moored Oil Tanker: A Kalman Filter Approach. Lecture Notes in Mechanical Engineering, 2013, , 749-760.	0.3	1
94	Coastal morphodynamic features/patterns analisys through a video-based system and image processing. , 2012, , .		3
95	The new wave energy converter WaveCat: Concept and laboratory tests. Marine Structures, 2012, 29, 58-70.	1.6	115
96	Coastal features analysis using GIS tools–stretch Esmoriz-Furadouro. Journal of Coastal Conservation, 2012, 16, 269-279.	0.7	1
97	GIS and web-based information as innovative tools for coastal zone management. Journal of Coastal Conservation, 2012, 16, 429-429.	0.7	0
98	People, Communities, and Education at the Coast. Journal of Coastal Conservation, 2012, 16, 521-521.	0.7	0
99	Modelling of the coastal defence scheme of Espinho, Portugal. Journal of Coastal Conservation, 2012, 16, 211-221.	0.7	0
100	Development of an experimental system for greywater reuse. Desalination, 2012, 285, 301-305.	4.0	48
101	OPTIMIZATION OF THE WAVECAT WAVE ENERGY CONVERTER. Coastal Engineering Proceedings, 2012, 1, 5.	0.1	7
102	Beach Hydromorphological Analysis Through Remote Sensing. Journal of Coastal Research, 2011, 61, 44-51.	0.1	2
103	Efficiency analysis to reflection of a new quay wall type. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 539-546.	0.7	11
104	Artificial intelligence applied to plane wave reflection at submerged breakwaters. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 465-472.	0.7	11
105	Identification of beach hydromorphological patterns/forms through image classification techniques applied to remotely sensed data. International Journal of Remote Sensing, 2011, 32, 7399-7422.	1.3	30
106	Coastal Erosion Along the Portuguese Northwest Coast Due to Changing Sediment Discharges from Rivers and Climate Change. Coastal Research Library, 2011, , 135-151.	0.2	7
107	How can remote sensing data/techniques help us to understand beach hydromorphological behavior?. , 2011, , .		1
108	Artificial Intelligence and headland-bay beaches. Coastal Engineering, 2010, 57, 176-183.	1.7	17

#	Article	IF	CITATIONS
109	GIS Tool for Coastal Morphodynamics Analysis. Coastal Systems and Continental Margins, 2010, , 275-283.	0.0	3
110	Advanced Experimenting on Wave Interaction with Low-Crested Breakwaters. International Journal of Multiphysics, 2010, 4, 187-199.	0.3	1
111	Potential effects of climate change on northwest Portuguese coastal zones. ICES Journal of Marine Science, 2009, 66, 1497-1507.	1.2	80
112	Two-Dimensional Physical Modeling of the Northern Breakwater of Leixões Harbor, Portugal: Case Study. Journal of Waterway, Port, Coastal and Ocean Engineering, 2009, 135, 288-295.	0.5	1
113	Beach hydromorphological classification through image classification techniques applied to remotely sensed data. , 2009, , .		1
114	Application of GIS tools for Leça River Basin soil erosion (Northern Portugal) evaluation. , 2009, , .		2
115	VELOCITY AT THE SURFACE AND DYNAMIC PRESSURE MEASUREMENTS ON SUBMERGED BREAKWATERS. , 2009, , .		0
116	Analysis of the Behavior of Moored Tankers. , 2008, , .		0
117	Vulnerability, sensibility or coastal indicators? A preliminary analysis for a methodology of risk analysis. WIT Transactions on Information and Communication Technologies, 2008, , .	0.0	1
118	MONITORING OF THE COASTAL DEFENCE WORKS OF COSTA DA CAPARICA, PORTUGAL. , 2007, , .		0
119	Analysis of the wave-flow interaction with submerged breakwaters. WIT Transactions on Modelling and Simulation, 2007, , .	0.0	3
120	Specific kinetic energy concept for regular waves. Ocean Engineering, 2006, 33, 1283-1298.	1.9	3
121	Dynamic pressure evaluation near submerged breakwaters. WIT Transactions on Engineering Sciences, 2006, , .	0.0	1
122	A vulnerability analysis approach for the Portuguese West Coast. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	12
123	Environmental implications of the EUrosion project recommendations. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	0
124	COASTAL EVOLUTION AND COASTAL WORKS IN THE SOUTHERN PART OF AVEIRO LAGOON INLET, PORTUGAL. , 2005, , .		4
125	Regular water wave measurements near submerged breakwaters. Measurement Science and Technology, 2005, 16, 1883-1888.	1.4	2
126	REHABILITATION STUDY OF COASTAL DEFENSE WORKS AND ARTIFICIAL SAND NOURISHMENT AT COSTA DA CAPARICA, PORTUGAL. , 2005, , .		3

FRANCISCO TAVEIRA-PINTO

#	Article	IF	CITATIONS
127	Coastal management: Issues and tools. Introduction. Journal of Coastal Conservation, 2004, 10, 3.	0.7	3
128	Erosion risk levels at the NW Portuguese coast: The Douro mouth - Cape Mondego stretch. Journal of Coastal Conservation, 2004, 10, 43.	0.7	29
129	The practice of coastal zone management in Portugal. Journal of Coastal Conservation, 2004, 10, 147.	0.7	28
130	Environmental aspects of using detached breakwaters for coastal protection purposes. Management of Environmental Quality, 2004, 15, 62-71.	2.2	2
131	Portuguese coastal zones and the new coastal management plans. Journal of Coastal Conservation, 2003, 9, 25.	0.7	25
132	Detailed laser Doppler measurements of two-dimensional regular waves over submerged breakwaters. Journal of Hydraulic Research/De Recherches Hydrauliques, 2003, 41, 579-587.	0.7	1
133	Spatial Regular Wave Velocity Field Measurements Near Submerged Breakwaters. , 2002, , 1136.		2
134	Single-phase SPH modelling of plunge pool dynamic pressures at a near-prototype scale. Journal of Hydraulic Research/De Recherches Hydrauliques, 0, , 1-15.	0.7	1
135	Bottom supported tension leg tower with inclined tethers for offshore wind turbines. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 0, , 1-32.	1.4	7
136	Modelling of the coastal defence scheme of Espinho, Portugal. Journal of Coastal Conservation, 0, , .	0.7	0