
Mohammad Pourkheirandish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9258184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.	6.0	781
2	Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1424-1429.	3.3	563
3	Evolution of the Grain Dispersal System in Barley. Cell, 2015, 162, 527-539.	13.5	265
4	Cleistogamous flowering in barley arises from the suppression of microRNA-guided <i>HvAP2</i> mRNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 490-495.	3.3	201
5	<i>Six-rowed spike4</i> (<i>Vrs4</i>) controls spikelet determinacy and row-type in barley. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13198-13203.	3.3	140
6	An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12354-12359.	3.3	134
7	The Importance of Barley Genetics and Domestication in a Global Perspective. Annals of Botany, 2007, 100, 999-1008.	1.4	125
8	Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley. Current Biology, 2016, 26, 775-781.	1.8	85
9	Divergence of expression pattern contributed to neofunctionalization of duplicated <scp>HD</scp> â€ <scp>Z</scp> ip <scp>I</scp> transcription factor in barley. New Phytologist, 2013, 197, 939-948.	3.5	67
10	On the Origin of the Non-brittle Rachis Trait of Domesticated Einkorn Wheat. Frontiers in Plant Science, 2017, 8, 2031.	1.7	58
11	Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions. Functional and Integrative Genomics, 2010, 10, 123-133.	1.4	49
12	Molecular genetics of leaf rust resistance in wheat and barley. Theoretical and Applied Genetics, 2020, 133, 2035-2050.	1.8	46
13	Global Role of Crop Genomics in the Face of Climate Change. Frontiers in Plant Science, 2020, 11, 922.	1.7	45
14	A <scp>GDSL</scp> â€motif esterase/acyltransferase/lipase is responsible for leaf water retention in barley. Plant Direct, 2017, 1, e00025.	0.8	39
15	Analysis of Intraspecies Diversity in Wheat and Barley Genomes Identifies Breakpoints of Ancient Haplotypes and Provides Insight into the Structure of Diploid and Hexaploid Triticeae Gene Pools Â. Plant Physiology, 2009, 149, 258-270.	2.3	38
16	Molecular evolution and phylogeny of the RPB2 gene in the genus Hordeum. Annals of Botany, 2009, 103, 975-983.	1.4	33
17	Allelic variation of row type gene Vrs1 in barley and implication of the functional divergence. Breeding Science, 2009, 59, 621-628.	0.9	30
18	Structure, transcription and post-transcriptional regulation of the bread wheat orthologs of the barley cleistogamy gene Cly1. Theoretical and Applied Genetics, 2013, 126, 1273-1283.	1.8	27

#	Article	IF	CITATIONS
19	miR172 downregulates the translation of cleistogamy 1 in barley. Annals of Botany, 2018, 122, 251-265.	1.4	25
20	Wheat domestication in light of haplotype analyses of the Brittle rachis 1 genes (BTR1-A and BTR1-B). Plant Science, 2019, 285, 193-199.	1.7	23
21	High-resolution genetic mapping and physical map construction for the fertility restorer Rfm1 locus in barley. Theoretical and Applied Genetics, 2015, 128, 283-290.	1.8	20
22	Elucidation of the origin of â€~ agriocrithon ' based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication. Plant Journal, 2018, 94, 525-534.	2.8	17
23	Quantitative Trait Loci and Maternal Effects Affecting the Strong Grain Dormancy of Wild Barley (Hordeum vulgare ssp. spontaneum). Frontiers in Plant Science, 2017, 8, 1840.	1.7	16
24	Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum) Tj ETQq0 0	0.rgBT /Ov	verlock 10 Tr 15
25	Variation in the wheat <i>AP2</i> homoeologs, the genes underlying lodicule development. Breeding Science, 2013, 63, 255-266.	0.9	15
26	An eceriferum locus, cer-zv, is associated with a defect in cutin responsible for water retention in barley (Hordeum vulgare) leaves. Theoretical and Applied Genetics, 2013, 126, 637-646.	1.8	14
27	Wheat yellow mosaic virus resistance in wheat cultivar Madsen acts in roots but not in leaves. Journal of General Plant Pathology, 2016, 82, 261-267.	0.6	13
28	An alternative mechanism for cleistogamy in barley. Theoretical and Applied Genetics, 2013, 126, 2753-2762.	1.8	12
29	The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei. Nature Communications, 2022, 13, 2386.	5.8	12
30	Detection of photoperiod responsive and non-responsive flowering time QTL in barley. Breeding Science, 2011, 61, 183-188.	0.9	11
31	Population-genetic analysis of HvABCG31 promoter sequence in wild barley (Hordeum vulgare ssp.) Tj ETQq1 1 0.	784314 rg 3.2	gBT /Overloc
32	Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley (Hordeum) Tj ETQq0 0 0 rgBT	Overlock	40 Tf 50 22
33	Diversification of the promoter sequences of wheat Mother of FT and TFL1 on chromosome 3A. Molecular Breeding, 2015, 35, 1.	1.0	7
34	Mapping of QTL for intermedium spike on barley chromosome 4H using EST-based markers. Breeding Science, 2009, 59, 383-390.	0.9	7
35	Genetic Diversity of Cultivated Barley Landraces in Iran Measured Using Microsatellites. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2012, , 287-290.	0.2	7

 $_{36}$ Molecular variability and population structure of a core collection of date palm (Phoenix dactylifera) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 $_{-36}^{-36}$

#	Article	IF	CITATIONS
37	Grain Disarticulation in Wild Wheat and Barley. Plant and Cell Physiology, 2022, 63, 1584-1591.	1.5	4
38	Allele mining of wheat ABA receptor at TaPYL4 suggests neo-functionalization among the wheat homoeologs. Journal of Integrative Agriculture, 2022, 21, 2183-2196.	1.7	3
39	Grain dispersal mechanism in cereals arose from a genome duplication followed by changes in spatial expression of genes involved in pollen development. Theoretical and Applied Genetics, 2022, 135, 1263-1277.	1.8	1