Ashley A Vu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9257952/publications.pdf

Version: 2024-02-01

	840776		1125743
13	506	11	13
papers	citations	h-index	g-index
14	14	14	751
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ginger and Garlic Extracts Enhance Osteogenesis in 3D Printed Calcium Phosphate Bone Scaffolds with Bimodal Pore Distribution. ACS Applied Materials & Interfaces, 2022, 14, 12964-12975.	8.0	12
2	Effects of Vitamin A (Retinol) Release from Calcium Phosphate Matrices and Porous 3D Printed Scaffolds on Bone Cell Proliferation and Maturation. ACS Applied Bio Materials, 2022, 5, 1120-1129.	4.6	5
3	Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Additive Manufacturing, 2021, 39, 101870.	3.0	21
4	Vitamin D3 Release from Traditionally and Additively Manufactured Tricalcium Phosphate Bone Tissue Engineering Scaffolds. Annals of Biomedical Engineering, 2020, 48, 1025-1033.	2.5	17
5	Natural Antibiotic Oregano in Hydroxyapatite-Coated Titanium Reduces Osteoclastic Bone Resorption for Orthopedic and Dental Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52383-52392.	8.0	18
6	Effects of chitosan-loaded hydroxyapatite on osteoblasts and osteosarcoma for chemopreventative applications. Materials Science and Engineering C, 2020, 115, 111041.	7.3	16
7	Thermal Oxide Layer Enhances Crystallinity and Mechanical Properties for Plasma-Sprayed Hydroxyapatite Biomedical Coatings. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33465-33472.	8.0	26
8	Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Materials Horizons, 2020, 7, 2011-2027.	12.2	81
9	Clinical significance of three-dimensional printed biomaterials and biomedical devices. MRS Bulletin, 2019, 44, 494-504.	3.5	23
10	Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomaterialia, 2019, 92, 325-335.	8.3	107
11	Effects of vitamin D ₃ release from 3D printed calcium phosphate scaffolds on osteoblast and osteoclast cell proliferation for bone tissue engineering. RSC Advances, 2019, 9, 34847-34853.	3.6	10
12	Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomaterialia, 2019, 84, 414-423.	8.3	121
13	Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium. Materials Science and Engineering C, 2018, 88, 166-171.	7.3	49