Shiu-Lok Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9257930/publications.pdf Version: 2024-02-01

Shull or Hu

#	Article	lF	CITATIONS
1	Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nature Medicine, 1999, 5, 526-534.	30.7	370
2	Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. Journal of Experimental Medicine, 2018, 215, 1571-1588.	8.5	366
3	Effect of immunization with a vaccinia-HIV env recombinant on HIV infection of chimpanzees. Nature, 1987, 328, 721-723.	27.8	215
4	Expression of AIDS virus envelope gene in recombinant vaccinia viruses. Nature, 1986, 320, 537-540.	27.8	206
5	TRIMCyp expression in Old World primates <i>Macaca nemestrina</i> and <i>Macaca fascicularis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3569-3574.	7.1	167
6	Rapid Viral Escape at an Immunodominant Simian-Human Immunodeficiency Virus Cytotoxic T-Lymphocyte Epitope Exacts a Dramatic Fitness Cost. Journal of Virology, 2005, 79, 5721-5731.	3.4	164
7	Removal of a Single N-Linked Glycan in Human Immunodeficiency Virus Type 1 gp120 Results in an Enhanced Ability To Induce Neutralizing Antibody Responses. Journal of Virology, 2008, 82, 638-651.	3.4	154
8	Passive immune globulin therapy in the SIV/macaque model: early intervention can alter disease profile. Immunology Letters, 1996, 51, 107-114.	2.5	144
9	Enhancing the Proteolytic Maturation of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Journal of Virology, 2002, 76, 2606-2616.	3.4	133
10	Studies of the Neutralizing Activity and Avidity of Anti-Human Immunodeficiency Virus Type 1 Env Antibody Elicited by DNA Priming and Protein Boosting. Journal of Virology, 1998, 72, 9092-9100.	3.4	110
11	T-cell responses to human AIDS virus in macaques immunized with recombinant vaccinia viruses. Nature, 1986, 323, 344-346.	27.8	99
12	Passive Immunotherapy in Simian Immunodeficiency Virus-Infected Macaques Accelerates the Development of Neutralizing Antibodies. Journal of Virology, 2004, 78, 5983-5995.	3.4	99
13	Translational control of SV40 T antigen expressed from the adenovirus late promoter. Cell, 1983, 33, 455-464.	28.9	87
14	The Use of Nonhuman Primate Models in HIV Vaccine Development. PLoS Medicine, 2008, 5, e173.	8.4	87
15	Lipid–Drug Association Enhanced HIV-1 Protease Inhibitor Indinavir Localization in Lymphoid Tissues and Viral Load Reduction: A Proof of Concept Study in HIV-2287-Infected Macaques. Journal of Acquired Immune Deficiency Syndromes (1999), 2003, 34, 387-397.	2.1	79
16	Non-Human Primate Models for AIDS Vaccine Research. Current Drug Targets Infectious Disorders, 2005, 5, 193-201.	2.1	77
17	Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood, 2013, 122, 179-187.	1.4	77
18	Processing, assembly, and immunogenicity of human immunodeficiency virus core antigens expressed by recombinant vaccinia virus. Virology, 1990, 179, 321-329.	2.4	74

Shiu-Lok Hu

#	Article	IF	CITATIONS
19	Influence of N-Linked Glycans in V4-V5 Region of Human Immunodeficiency Virus Type 1 Glycoprotein gp160 on Induction of a Virus-Neutralizing Humoral Response. Journal of Acquired Immune Deficiency Syndromes, 1996, 12, 213-220.	0.3	73
20	Terpestacin, a new syncytium formation inhibitor from Arthrinium sp Journal of Antibiotics, 1993, 46, 367-373.	2.0	72
21	Functional roles of the V3 hypervariable region of HIV-1 gp160 in the processing of gp160 and in the formation of syncytia in CD4+ cells. Virology, 1992, 186, 313-317.	2.4	63
22	Role of Immune Responses against the Envelope and the Core Antigens of Simian Immunodeficiency Virus SIVmne in Protection against Homologous Cloned and Uncloned Virus Challenge in Macaques. Journal of Virology, 1999, 73, 8201-8215.	3.4	63
23	Neutralizing Antibodies Against HIV-1 BRU and SF2 Isolates Generated in Mice Immunized with Recombinant Vaccinia Virus Expressing HIV-1 (BRU) Envelope Glycoproteins and Boosted with Homologous gp160. AIDS Research and Human Retroviruses, 1991, 7, 615-620.	1.1	60
24	Solution Structure, Conformational Dynamics, and CD4-Induced Activation in Full-Length, Glycosylated, Monomeric HIV gp120. Journal of Virology, 2012, 86, 8750-8764.	3.4	60
25	Novel TRIM5 Isoforms Expressed by <i>Macaca nemestrina</i> . Journal of Virology, 2007, 81, 12210-12217.	3.4	59
26	Early Postinfection Antiviral Treatment Reduces Viral Load and Prevents CD4 ⁺ Cell Decline in HIV Type 2-Infected Macaques. AIDS Research and Human Retroviruses, 1997, 13, 1375-1381.	1.1	58
27	Limited Breadth of the Protective Immunity Elicited by Simian Immunodeficiency Virus SIVmne gp160 Vaccines in a Combination Immunization Regimen. Journal of Virology, 1999, 73, 618-630.	3.4	53
28	Suppression of Viremia and Evolution of Human Immunodeficiency Virus Type 1 Drug Resistance in a Macaque Model for Antiretroviral Therapy. Journal of Virology, 2007, 81, 12145-12155.	3.4	51
29	Short Communication:N-Linked Glycosylation in the V3 Region of HIV Type 1 Surface Antigen Modulates Coreceptor Usage in Viral Infection. AIDS Research and Human Retroviruses, 2001, 17, 1473-1479.	1.1	50
30	Protection of Macaques against Intrarectal Infection by a Combination Immunization Regimen with Recombinant Simian Immunodeficiency Virus SIVmne gp160 Vaccines. Journal of Virology, 1999, 73, 3134-3146.	3.4	49
31	Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16007.	4.1	46
32	Intestinal damage precedes mucosal immune dysfunction in SIV infection. Mucosal Immunology, 2018, 11, 1429-1440.	6.0	46
33	Response to. Journal of Acquired Immune Deficiency Syndromes (1999), 2006, 41, 394.	2.1	44
34	Epitope-Independent Purification of Native-Like Envelope Trimers from Diverse HIV-1 Isolates. Journal of Virology, 2016, 90, 9471-9482.	3.4	43
35	Prospects of HIV Env Modification as an Approach to HIV Vaccine Design. Current HIV Research, 2007, 5, 507-513.	0.5	42
36	Vif Substitution Enables Persistent Infection of Pig-Tailed Macaques by Human Immunodeficiency Virus Type 1. Journal of Virology, 2011, 85, 3767-3779.	3.4	41

#	Article	IF	CITATIONS
37	Genetic Diversity of Simian Immunodeficiency Virus Encoding HIV-1 Reverse Transcriptase Persists in Macaques despite Antiretroviral Therapy. Journal of Virology, 2011, 85, 1067-1076.	3.4	39
38	HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles. Virology, 1991, 183, 487-495.	2.4	38
39	Variable Prevalence and Functional Diversity of the Antiretroviral Restriction Factor TRIMCyp in Macaca fascicularis. Journal of Virology, 2011, 85, 9956-9963.	3.4	38
40	A Minimally Replicative HIV-2 Live-Virus Vaccine ProtectsM. nemestrinafrom Disease after HIV-2287Challenge. Virology, 1998, 242, 150-160.	2.4	37
41	Regulation of integration by coliphage λ: Activation of int transcription by the cII and cIII proteins. Virology, 1979, 92, 542-556.	2.4	36
42	Cross-Neutralizing Antibodies in Rabbits Immunized with HIV-1 gp160 Purified from Simian Cells Infected with a Recombinant Vaccinia Virus. AIDS Research and Human Retroviruses, 1991, 7, 791-798.	1.1	36
43	Prime–boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: Efficacy against repeated mucosal R5 clade C SHIV challenges. Vaccine, 2011, 29, 5611-5622.	3.8	35
44	Somatic Hypermutation-Induced Changes in the Structure and Dynamics of HIV-1 Broadly Neutralizing Antibodies. Structure, 2016, 24, 1346-1357.	3.3	35
45	Evidence for Persistent, Occult Infection in Neonatal Macaques following Perinatal Transmission of Simian-Human Immunodeficiency Virus SF162P3. Journal of Virology, 2007, 81, 822-834.	3.4	32
46	Differential impact of transplantation on peripheral and tissue-associated viral reservoirs: Implications for HIV gene therapy. PLoS Pathogens, 2018, 14, e1006956.	4.7	32
47	Thrombotic Microangiopathy in the HIV-2-Infected Macaque. American Journal of Pathology, 1999, 155, 649-661.	3.8	29
48	Isolate-Specific Differences in the Conformational Dynamics and Antigenicity of HIV-1 gp120. Journal of Virology, 2013, 87, 10855-10873.	3.4	29
49	Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology, 2018, 514, 106-117.	2.4	29
50	Studies of Complement-Activating Antibodies in the SIV/Macaque Model of Acute Primary Infection and Vaccine Protection. AIDS Research and Human Retroviruses, 1995, 11, 963-970.	1.1	28
51	Differential pathogenicity of SHIV _{SF162 P4} infection in pigâ€ŧailed and rhesus macaques. Journal of Medical Primatology, 2008, 37, 13-23.	0.6	28
52	Derivation and characterization of a highly pathogenic isolate of human immunodeficiency virus type 2 that causes rapid CD4+ cell depletion in Macaca nemestrina. Journal of Medical Primatology, 2003, 29, 114-126.	0.6	27
53	Conservation of DNA Sequence in the Predicted Major Late Promoter Regions of Selected Mastadenoviruses. Virology, 1996, 220, 390-401.	2.4	25
54	Immunogenicity and protective efficacy of Gag/Pol/Env vaccines derived from temporal isolates of SIVmne against cognate virus challenge. Journal of Medical Primatology, 2007, 36, 254-265.	0.6	25

#	Article	IF	CITATIONS
55	Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan. Journal of Virology, 2016, 90, 9224-9236.	3.4	25
56	Protection of vacciniaâ€primed macaques against SIV mne infection by combination immunization with recombinant vaccinia virus and SIV mne gp160. Journal of Medical Primatology, 1993, 22, 92-99.	0.6	25
57	Inducing Cross-Clade Neutralizing Antibodies against HIV-1 by Immunofocusing. PLoS ONE, 2008, 3, e3937.	2.5	25
58	A spatio-temporal assessment of simian/human immunodeficiency virus (SHIV) evolution reveals a highly dynamic process within the host. PLoS Pathogens, 2017, 13, e1006358.	4.7	25
59	Protective Immunity to SIV Challenge Elicited by Vaccination of Macaques with Multigenic DNA Vaccines Producing Virus-Like Particles. AIDS Research and Human Retroviruses, 2004, 20, 425-434.	1.1	24
60	Loss of immune homeostasis dictates SHIV rebound after stem-cell transplantation. JCI Insight, 2017, 2, e91230.	5.0	24
61	Pathogenic infection of Macaca nemestrinawith a CCR5-tropic subtype-C simian-human immunodeficiency virus. Retrovirology, 2009, 6, 65.	2.0	23
62	Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition. Biochemistry, 2016, 55, 2197-2213.	2.5	23
63	Efficacy of a multigenic protein vaccine containing multimeric HIV gp160 against heterologous SHIV clade C challenges. Aids, 2007, 21, 1841-1848.	2.2	22
64	Evolution of the Antiretroviral Restriction Factor TRIMCyp in Old World Primates. PLoS ONE, 2010, 5, e14019.	2.5	22
65	Vaccination against Heterologous R5 Clade C SHIV: Prevention of Infection and Correlates of Protection. PLoS ONE, 2011, 6, e22010.	2.5	22
66	Immune Responses to SIV <i>mne</i> Envelope Glycoproteins Protect Macaques from Homologous SIV Infection. AIDS Research and Human Retroviruses, 1992, 8, 1489-1494.	1.1	21
67	Comparative Immunogenicity of Subtype A Human Immunodeficiency Virus Type 1 Envelope Exhibiting Differential Exposure of Conserved Neutralization Epitopes. Journal of Virology, 2010, 84, 2573-2584.	3.4	21
68	Lentivirus-mediated Gene Transfer in Hematopoietic Stem Cells Is Impaired in SHIV-infected, ART-treated Nonhuman Primates. Molecular Therapy, 2015, 23, 943-951.	8.2	21
69	Conserved Role of an N-Linked Glycan on the Surface Antigen of Human Immunodeficiency Virus Type 1 Modulating Virus Sensitivity to Broadly Neutralizing Antibodies against the Receptor and Coreceptor Binding Sites. Journal of Virology, 2016, 90, 829-841.	3.4	21
70	Evidence for Early Local Viral Replication and Local Production of Antiviral Immunity upon Mucosal Simian-Human Immunodeficiency Virus SHIV 89.6 Infection in Macaca nemestrina. Journal of Virology, 2001, 75, 8589-8596.	3.4	20
71	Immunization against SIVmne in macaques using multigenic DNA vaccines. Journal of Medical Primatology, 1999, 28, 206-213.	0.6	19
72	Perinatal transmission of SHIV-SF162P3 in Macaca nemestrina. Journal of Medical Primatology, 2004, 33, 243-250.	0.6	19

#	Article	IF	CITATIONS
73	DNA prime/protein boost immunization against HIV clade C: Safety and immunogenicity in mice. Vaccine, 2006, 24, 2324-2332.	3.8	19
74	Characterization of Neutralizing Antibody Responses Elicited by Clade A Envelope Immunogens Derived from Early Transmitted Viruses. Journal of Virology, 2008, 82, 5912-5921.	3.4	19
75	Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS ONE, 2021, 16, e0257191.	2.5	19
76	Analysis of Cytotoxic T Lymphocyte Responses to SIV Proteins in SIV-Infected Macaques Using Antigen-Specific Stimulation with Recombinant Vaccinia and Fowl Poxviruses. AIDS Research and Human Retroviruses, 1994, 10, 551-560.	1.1	18
77	Dendritic Cell-Based Vaccine Strategy against Human Immunodeficiency Virus Clade C: Skewing The Immune Response Toward A Helper T Cell Type 2 Profile. Viral Immunology, 2007, 20, 160-169.	1.3	18
78	Evidence for persistence of the SHIV reservoir early after MHC haploidentical hematopoietic stem cell transplantation. Nature Communications, 2018, 9, 4438.	12.8	18
79	Tumorigenic poxviruses: Characterization of the expression of an epidermal growth factor related gene in shope fibroma virus. Virology, 1990, 179, 926-930.	2.4	17
80	Evaluation of gp160 Vaccinees in the hu-PBL-SCID Mouse Model. AIDS Research and Human Retroviruses, 1992, 8, 1387-1387.	1.1	17
81	Recombinant subunit vaccines as an approach to study correlates of protection against primate lentivirus infection. Immunology Letters, 1996, 51, 115-119.	2.5	17
82	Development of broad neutralization activity in simian/human immunodeficiency virus-infected rhesus macaques after long-term infection. Aids, 2018, 32, 555-563.	2.2	17
83	Structural dynamics reveal isolate-specific differences at neutralization epitopes on HIV Env. IScience, 2022, 25, 104449.	4.1	16
84	Synthesis of an active hybrid growth factor (GF) in bacteria: transforming GF-α/vaccinia GF fusion protein. Gene, 1987, 60, 175-182.	2.2	15
85	Multigene DNA prime-boost vaccines for SHIV89.6P. Journal of Medical Primatology, 2003, 32, 218-228.	0.6	15
86	Evaluation of protective efficacy of recombinant subunit vaccines against simian immunodeficiency virus infection of macaques. Journal of Medical Primatology, 1992, 21, 119-125.	0.6	15
87	Development of a chronically catheterized maternalâ€fetal macaque model to study in utero motherâ€ŧoâ€fetus HIV transmission: A preliminary report. Journal of Medical Primatology, 1996, 25, 218-224.	0.6	14
88	Robust suppression of envâ€ <scp>SHIV</scp> viremia in <i><scp>M</scp>acaca nemestrina</i> by 3â€drug <scp>ART</scp> is independent of timing of initiation during chronic infection. Journal of Medical Primatology, 2013, 42, 237-246.	0.6	14
89	Simian Immunodeficiency Virus-Induced Alterations in Monocyte Production of Tumor Necrosis Factor Alpha Contribute to Reduced Immune Activation in Sooty Mangabeys. Journal of Virology, 2012, 86, 7605-7615.	3.4	13
90	Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization. Journal of Virology, 2016, 90, 8644-8660.	3.4	13

#	Article	IF	CITATIONS
91	Nucleotide and deduced amino acid sequence of the bovine adenovirus type 7 proteinase. Nucleic Acids Research, 1990, 18, 5567-5567.	14.5	12
92	Persistence of low levels of simian immunodeficiency virus in macaques that were transiently viremic by conventional testing. Virology, 2004, 323, 208-219.	2.4	12
93	Isolation of Monoclonal Antibodies with Predetermined Conformational Epitope Specificity. PLoS ONE, 2012, 7, e38943.	2.5	12
94	Lack of viral control and development of combination antiretroviral therapy escape mutations in macaques after bone marrow transplantation. Aids, 2015, 29, 1597-1606.	2.2	12
95	Oral Immunization with Recombinant Vaccinia Virus Prime and Intramuscular Protein Boost Provides Protection against Intrarectal Simian-Human Immunodeficiency Virus Challenge in Macaques. Vaccine Journal, 2016, 23, 204-212.	3.1	12
96	HIV in central nervous system and behavioral development. Aids, 2004, 18, 1363-1370.	2.2	11
97	Purification of recombinant vaccinia virus-expressed monomeric HIV-1 gp120 to apparent homogeneity. Protein Expression and Purification, 2013, 90, 34-39.	1.3	11
98	Recombinant Subunit Vaccines against Primate Lentiviruses. AIDS Research and Human Retroviruses, 1996, 12, 451-453.	1.1	10
99	Multimodality vaccination against clade C SHIV: Partial protection against mucosal challenges with a heterologous tier 2 virus. Vaccine, 2014, 32, 6527-6536.	3.8	9
100	Nucleotide and deduced amino acid sequence of the bovine adenovirus type 3 proteinase. Nucleic Acids Research, 1990, 18, 5568-5568.	14.5	8
101	Conserved CXCR4 usage and enhanced replicative capacity of HIV-2/287, an isolate highly pathogenic in Macaca nemestrina. Aids, 2001, 15, 2349-2357.	2.2	8
102	Extracellular Matrix Proteins Mediate HIV-1 gp120 Interactions with α ₄ β ₇ . Journal of Virology, 2017, 91, .	3.4	8
103	Genetic Variation in a Human Immunodeficiency Virus Type 2 Live-Virus <i>Macaca nemestrina</i> Vaccine Model. Journal of Virology, 1998, 72, 7871-7884.	3.4	8
104	Assembly and characterization of gp160-nanodiscs: A new platform for biochemical characterization of HIV envelope spikes. Journal of Virological Methods, 2015, 226, 15-24.	2.1	7
105	Dysregulation of multiple inflammatory molecules in lymph node and ileum of macaques during <scp>RT</scp> â€ <scp>SHIV</scp> infection with or without antiretroviral therapy. Journal of Medical Primatology, 2014, 43, 298-309.	0.6	4
106	Rapid Shift from Virally Infected Cells to Germinal Center-Retained Virus after HIV-2 Infection of Macaques. American Journal of Pathology, 2000, 156, 1197-1207.	3.8	3
107	Evidence for immune-mediated reduction of viral replication in Macaca nemestrina mucosally immunized with inactivated SHIV89.6. Virology, 2003, 308, 178-190.	2.4	3
108	Dynamics of Envelope Evolution in Clade C SHIV-Infected Pig-Tailed Macaques during Disease Progression Analyzed by Ultra-Deep Pyrosequencing. PLoS ONE, 2012, 7, e32827.	2.5	3

Shiu-Lok Hu

#	Article	IF	CITATIONS
109	In vivo Serial Passaging of Human–Simian Immunodeficiency Virus Clones Identifies Characteristics for Persistent Viral Replication. Frontiers in Microbiology, 2021, 12, 779460.	3.5	3
110	Interface between Animal Models and Clinical Phase I Trials Workshop: Conference Summary. AIDS Research and Human Retroviruses, 1995, 11, 1305-1306.	1.1	2
111	Peripheral Blood Invariant Natural Killer T Cells of Pig-Tailed Macaques. PLoS ONE, 2012, 7, e48166.	2.5	2
112	The Influence of HIV Envelope Glycosylation on Adaptive Immune Response. , 2014, , 59-83.		2
113	Variations in the Biological Functions of HIV-1 Clade C Envelope in a SHIV-Infected Rhesus Macaque during Disease Progression. PLoS ONE, 2013, 8, e66973.	2.5	1
114	Immunization by exposure to live virus (SIVmne/HIV-2287) during antiretroviral drug prophylaxis may reduce risk of subsequent viral challenge. PLoS ONE, 2021, 16, e0240495.	2.5	0
115	A Non-Human Primate Model To Study Anti-HIV Gene Therapy Strategies Blood, 2005, 106, 3046-3046.	1.4	0
116	Transduction of Macaque Hematopoietic Repopulating Cells with Lenti and Foamy Retroviral Vectors with MGMT Selection Cassettes To Evaluate AIDS Gene Therapy Strategies Blood, 2006, 108, 3273-3273.	1.4	0