Maria Filippa Addis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative secretome analysis of <i>Staphylococcus aureus</i> strains with different within-herd intramammary infection prevalence. Virulence, 2022, 13, 174-190.	4.4	5
2	Milk proteins as mastitis markers in dairy ruminants - a systematic review. Veterinary Research Communications, 2022, 46, 329-351.	1.6	13
3	Peptidomic changes in the milk of water buffaloes (Bubalus bubalis) with intramammary infection by non-aureus staphylococci. Scientific Reports, 2022, 12, 8371.	3.3	3
4	Changes in the lipidome of water buffalo milk during intramammary infection by non-aureus Staphylococci. Scientific Reports, 2022, 12, .	3.3	1
5	Proteomic profiles and cytokeratin 13 as a potential biomarker of Ovis aries papillomavirus 3-positive and negative cutaneous squamous cell carcinomas. Research in Veterinary Science, 2021, 134, 112-119.	1.9	5
6	Draft Genome Sequence of Acholeplasma laidlawii Isolated from the Conjunctiva of a Heifer with Infectious Bovine Keratoconjunctivitis. Microbiology Resource Announcements, 2021, 10, .	0.6	0
7	The value of the biomarkers cathelicidin, milk amyloid A, and haptoglobin to diagnose and classify clinical and subclinical mastitis. Journal of Dairy Science, 2021, 104, 2106-2122.	3.4	15
8	Mycoplasma species isolated from bovine milk collected from US dairy herds between 2016 and 2019. Journal of Dairy Science, 2021, 104, 4813-4821.	3.4	5
9	Genotyping and Antimicrobial Susceptibility Profiling of Streptococcus uberis Isolated from a Clinical Bovine Mastitis Outbreak in a Dairy Farm. Antibiotics, 2021, 10, 644.	3.7	11
10	Identification of conserved Mycoplasma agalactiae surface antigens by immunoproteomics. Veterinary Immunology and Immunopathology, 2021, 236, 110239.	1.2	4
11	Feeding Pre-weaned Calves With Waste Milk Containing Antibiotic Residues Is Related to a Higher Incidence of Diarrhea and Alterations in the Fecal Microbiota. Frontiers in Veterinary Science, 2021, 8, 650150.	2.2	20
12	The untargeted lipidomic profile of quarter milk from dairy cows with subclinical intramammary infection by non-aureus staphylococci. Journal of Dairy Science, 2021, 104, 10268-10281.	3.4	12
13	Evaluation of a bovine cathelicidin ELISA for detecting mastitis in the dairy buffalo: Comparison with milk somatic cell count and bacteriological culture. Research in Veterinary Science, 2020, 128, 129-134.	1.9	14
14	Identification of secreted and cellular antigens of Staphylococcus aureus causing dairy sheep mastitis and their potential for vaccine development. Veterinary Immunology and Immunopathology, 2020, 230, 110149.	1.2	5
15	The Role of Innate Immune Response and Microbiome in Resilience of Dairy Cattle to Disease: The Mastitis Model. Animals, 2020, 10, 1397.	2.3	30
16	A Paradox in Bacterial Pathogenesis: Activation of the Local Macrophage Inflammasome Is Required for Virulence of Streptococcus uberis. Pathogens, 2020, 9, 997.	2.8	11
17	Proteomic datasets of uninfected and Staphylococcus aureus-infected goat milk. Data in Brief, 2020, 30, 105665.	1.0	1
18	Milk Microbiota: What Are We Exactly Talking About?. Frontiers in Microbiology, 2020, 11, 60.	3.5	101

#	Article	IF	CITATIONS
19	Influence of subclinical mastitis and intramammary infection by coagulase-negative staphylococci on the cow milk peptidome. Journal of Proteomics, 2020, 226, 103885.	2.4	18
20	Detailed data from experimentally-induced mastitis in ewes, with the aim to evaluate cathelicidin-1 in milk. Data in Brief, 2020, 29, 105259.	1.0	0
21	Relationship of Late Lactation Milk Somatic Cell Count and Cathelicidin with Intramammary Infection in Small Ruminants. Pathogens, 2020, 9, 37.	2.8	5
22	Impact of Staphylococcus aureus infection on the late lactation goat milk proteome: New perspectives for monitoring and understanding mastitis in dairy goats. Journal of Proteomics, 2020, 221, 103763.	2.4	14
23	Chronic intramammary infection by Listeria monocytogenes in a clinically healthy goat – a case report. BMC Veterinary Research, 2019, 15, 229.	1.9	17
24	Proteomic changes in the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis due to intramammary infection by Staphylococcus aureus and by non-aureus staphylococci. Scientific Reports, 2019, 9, 15850.	3.3	26
25	A reply to the comment on "control of bovine mastitis in the 21st century: Immunize or tolerize?―by Fernando N. Souza and co-workers. Research in Veterinary Science, 2019, 126, 1-3.	1.9	Ο
26	Liver proteome dataset of Sparus aurata exposed to low temperatures. Data in Brief, 2019, 26, 104419.	1.0	5
27	Milk cathelicidin and somatic cell counts in dairy goats along the course of lactation. Journal of Dairy Research, 2019, 86, 217-221.	1.4	14
28	Liver proteomics of gilthead sea bream (Sparus aurata) exposed to cold stress. Journal of Thermal Biology, 2019, 82, 234-241.	2.5	14
29	Detection of Cathelicidin-1 in the Milk as an Early Indicator of Mastitis in Ewes. Pathogens, 2019, 8, 270.	2.8	7
30	The Sarda Sheep Host Fecal Proteome. Proteomics, 2018, 18, 1700272.	2.2	2
31	Structural and Immunodiagnostic Characterization of Synthetic Antigen B Subunits From Echinococcus granulosus and Their Evaluation as Target Antigens for Cyst Viability Assessment. Clinical Infectious Diseases, 2018, 66, 1342-1351.	5.8	12
32	What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Research in Veterinary Science, 2018, 116, 88-98.	1.9	65
33	Characterization of paucibacillary ileal lesions in sheep with subclinical active infection by Mycobacterium avium subsp. paratuberculosis. Veterinary Research, 2018, 49, 117.	3.0	9
34	Milk microbiome diversity and bacterial group prevalence in a comparison between healthy Holstein Friesian and Rendena cows. PLoS ONE, 2018, 13, e0205054.	2.5	70
35	All Cats are Gray in the Dark: Enrichment/Depletion Approaches for Biomarker Discovery on <i>Felis catus</i> Plasma. Proteomics, 2018, 18, e1800191.	2.2	2
36	Relationship between milk cathelicidin abundance and microbiologic culture in clinical mastitis. Journal of Dairy Science, 2017, 100, 2944-2953.	3.4	19

#	Article	IF	CITATIONS
37	Diversity and functions of the sheep faecal microbiota: a multiâ€omic characterization. Microbial Biotechnology, 2017, 10, 541-554.	4.2	51
38	Cathelicidin production and release by mammary epithelial cells during infectious mastitis. Veterinary Immunology and Immunopathology, 2017, 189, 66-70.	1.2	29
39	Proteomic changes in the ileum of sheep infected with Mycobacterium avium subspecies paratuberculosis. Veterinary Journal, 2017, 219, 1-3.	1.7	4
40	Mastitis, milk quality and yield. Burleigh Dodds Series in Agricultural Science, 2017, , 43-62.	0.2	0
41	Aetiology, diagnosis and control of mastitis in dairy herds. Burleigh Dodds Series in Agricultural Science, 2017, , 399-430.	0.2	0
42	Protein expression changes induced in a malignant melanoma cell line by the curcumin analogue compound D6. BMC Cancer, 2016, 16, 317.	2.6	8
43	Diagnostic Accuracy of Antigen 5-Based ELISAs for Human Cystic Echinococcosis. PLoS Neglected Tropical Diseases, 2016, 10, e0004585.	3.0	29
44	Proteomic analysis of <i>Rhodotorula mucilaginosa</i> : dealing with the issues of a nonâ€conventional yeast. Yeast, 2016, 33, 433-449.	1.7	11
45	<i>Mycoplasma</i> lipoproteins are major determinants of neutrophil extracellular trap formation. Cellular Microbiology, 2016, 18, 1751-1762.	2.1	44
46	The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome, 2016, 4, 51.	11.1	124
47	The bovine milk microbiota: insights and perspectives from -omics studies. Molecular BioSystems, 2016, 12, 2359-2372.	2.9	181
48	Proteomic dataset of Paracentrotus lividus gonads of different sexes and at different maturation stages. Data in Brief, 2016, 8, 824-827.	1.0	2
49	Evaluation of milk cathelicidin for detection of bovine mastitis. Journal of Dairy Science, 2016, 99, 8250-8258.	3.4	36
50	A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions. BMC Veterinary Research, 2016, 13, 38.	1.9	6
51	Evaluation of milk cathelicidin for detection of dairy sheep mastitis. Journal of Dairy Science, 2016, 99, 6446-6456.	3.4	29
52	Proteomic changes occurring along gonad maturation in the edible sea urchin Paracentrotus lividus. Journal of Proteomics, 2016, 144, 63-72.	2.4	19
53	Atypical carcinoid and large cell neuroendocrine carcinoma of the lung: a proteomic dataset from formalin-fixed archival samples. Data in Brief, 2016, 7, 529-531.	1.0	3
54	Influence of seasonal and environmental patterns on the lipid content and fatty acid profiles in gonads of the edible sea urchin Paracentrotus lividus from Sardinia. Marine Environmental Research, 2016, 113, 124-133.	2.5	42

#	Article	IF	CITATIONS
55	Draft Genome Sequence of Rhodotorula mucilaginosa, an Emergent Opportunistic Pathogen. Genome Announcements, 2015, 3, .	0.8	23
56	Neutrophil extracellular traps in sheep mastitis. Veterinary Research, 2015, 46, 59.	3.0	53
5 7	Enrichment or depletion? The impact of stool pretreatment on metaproteomic characterization of the human gut microbiota. Proteomics, 2015, 15, 3474-3485.	2.2	63
58	Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: is the dog a suitable animal model for human breast cancer?. Tumor Biology, 2015, 36, 9083-9091.	1.8	45
59	A human gut metaproteomic dataset from stool samples pretreated or not by differential centrifugation. Data in Brief, 2015, 4, 559-562.	1.0	6
60	Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential. International Dairy Journal, 2015, 42, 26-33.	3.0	44
61	Full-Length Protein Extraction Protocols and Gel-Based Downstream Applications in Formalin-Fixed Tissue Proteomics. Methods in Molecular Biology, 2015, 1295, 117-134.	0.9	5
62	A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome, 2014, 2, 49.	11.1	114
63	Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Science, 2014, 12, 44.	1.7	22
64	Proteomic profiling of sea bass muscle by two-dimensional gel electrophoresis and tandem mass spectrometry. Fish Physiology and Biochemistry, 2014, 40, 311-322.	2.3	15
65	Critical comparison of sample preparation strategies for shotgun proteomic analysis of formalin-fixed, paraffin-embedded samples: insights from liver tissue. Clinical Proteomics, 2014, 11, 28.	2.1	45
66	Effect of whey concentration on protein recovery in fresh ovine ricotta cheese. Journal of Dairy Science, 2014, 97, 4686-4694.	3.4	37
67	An Easy and Efficient Method for Native and Immunoreactive Echinococcus granulosus Antigen 5 Enrichment from Hydatid Cyst Fluid. PLoS ONE, 2014, 9, e104962.	2.5	27
68	Proteomic characterization of hepatitis C eradication: Enzyme switch in the healing liver. Journal of Clinical Virology, 2013, 57, 274-278.	3.1	1
69	Characterization of size and composition of milk fat globules from Sarda and Saanen dairy goats. Small Ruminant Research, 2013, 109, 141-151.	1.2	31
70	Application of 2Dâ€ÐIGE to formalinâ€fixed diseased tissue samples from hospital repositories: Results from four case studies. Proteomics - Clinical Applications, 2013, 7, 252-263.	1.6	19
71	Farmed and Wild Fish. , 2013, , 181-203.		3
72	Production and Release of Antimicrobial and Immune Defense Proteins by Mammary Epithelial Cells following Streptococcus uberis Infection of Sheep. Infection and Immunity, 2013, 81, 3182-3197.	2.2	52

#	Article	IF	CITATIONS
73	Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the <i>Escherichia coli</i> proteome. Proteomics, 2013, 13, 2597-2607.	2.2	131
74	Mycoplasma agalactiae MAG_5040 is a Mg2+-Dependent, Sugar-Nonspecific SNase Recognised by the Host Humoral Response during Natural Infection. PLoS ONE, 2013, 8, e57775.	2.5	20
75	Evaluating the Impact of Different Sequence Databases on Metaproteome Analysis: Insights from a Lab-Assembled Microbial Mixture. PLoS ONE, 2013, 8, e82981.	2.5	113
76	High throughput genomic and proteomic technologies in the fight against infectious diseases. Journal of Infection in Developing Countries, 2013, 7, 182-190.	1.2	31
77	Comparability of differential proteomics data generated from paired archival fresh-frozen and formalin-fixed samples by GeLC–MS/MS and spectral counting. Journal of Proteomics, 2012, 77, 561-576.	2.4	51
78	Characterization of sheep milk fat globule proteins by two-dimensional polyacrylamide gel electrophoresis/mass spectrometry and generation of a reference map. International Dairy Journal, 2012, 24, 78-86.	3.0	20
79	2D DIGE/MS to investigate the impact of slaughtering techniques on postmortem integrity of fish filet proteins. Journal of Proteomics, 2012, 75, 3654-3664.	2.4	31
80	Setting proteins free: Progresses and achievements in proteomics of formalinâ€fixed, paraffinâ€embedded tissues. Proteomics - Clinical Applications, 2012, 6, 7-21.	1.6	51
81	Evaluation of the suitability of archival <scp>B</scp> ouinâ€fixed paraffinâ€embedded tissue specimens to proteomic investigation. Electrophoresis, 2012, 33, 1375-1384.	2.4	6
82	Proteomics and Pathway Analyses of the Milk Fat Globule in Sheep Naturally Infected by Mycoplasma agalactiae Provide Indications of the <i>In Vivo</i> Response of the Mammary Epithelium to Bacterial Infection. Infection and Immunity, 2011, 79, 3833-3845.	2.2	69
83	Comparison of blood serum peptide enrichment methods by Tricine SDS-PAGE and mass spectrometry. Journal of Proteomics, 2011, 75, 93-99.	2.4	22
84	Application of 2â€Ð DIGE to formalinâ€fixed, paraffinâ€embedded tissues. Proteomics, 2011, 11, 1005-1011.	2.2	26
85	Effects of <i>postmortem</i> storage temperature on sea bass (<i>Dicentrarchus labrax</i>) muscle protein degradation: Analysis by 2â€Ð DIGE and MS. Proteomics, 2011, 11, 2901-2910.	2.2	41
86	The sheep milk fat globule membrane proteome. Journal of Proteomics, 2011, 74, 350-358.	2.4	76
87	Proteomic analysis of formalin-fixed, paraffin-embedded lung neuroendocrine tumor samples from hospital archives. Journal of Proteomics, 2011, 74, 359-370.	2.4	39
88	Impact of fixation time on GeLC–MS/MS proteomic profiling of formalin-fixed, paraffin-embedded tissues. Journal of Proteomics, 2011, 74, 1015-1021.	2.4	23
89	The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane. BMC Microbiology, 2010, 10, 225.	3.3	29
90	Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions. BMC Cancer, 2010, 10, 156.	2.6	60

#	Article	IF	CITATIONS
91	Ovis aries Papillomavirus 3: A prototype of a novel genus in the family Papillomaviridae associated with ovine squamous cell carcinoma. Virology, 2010, 407, 352-359.	2.4	47
92	Stress relaxation behaviour and structural changes of muscle tissues from Gilthead Sea Bream (Sparus aurata L.) following high pressure treatment. Journal of Food Engineering, 2010, 96, 192-198.	5.2	81
93	Influence of Moraxella sp. colonization on the kidney proteome of farmed gilthead sea breams (Sparus) Tj ETQq1	1 0,7843 1.7	14 rgBT /Ove
94	Identification and characterization of novel Mycoplasma spp. belonging to the hominis group from griffon vultures. Research in Veterinary Science, 2010, 89, 58-64.	1.9	18
95	Proteomic analysis of muscle tissue from gilthead sea bream (Sparus aurata, L.) farmed in offshore floating cages. Aquaculture, 2010, 309, 245-252.	3.5	63
96	Generation of highâ€quality protein extracts from formalinâ€fixed, paraffinâ€embedded tissues. Proteomics, 2009, 9, 3815-3823.	2.2	141
97	2â€D PACE and MS analysis of proteins from formalinâ€fixed, paraffinâ€embedded tissues. Proteomics, 2009, 9, 4329-4339.	2.2	52
98	Characterisation of Mycoplasma capricolum P60 surface lipoprotein and its evaluation in a recombinant ELISA. Veterinary Microbiology, 2008, 128, 81-89.	1.9	11
99	Molecular and Antigenic Characterization of a <i>Mycoplasma Bovis</i> Strain Causing an Outbreak of Infectious Keratoconjunctivitis. Journal of Veterinary Diagnostic Investigation, 2006, 18, 41-51.	1.1	45
100	Anaplasma phagocytophilum, Sardinia, Italy. Emerging Infectious Diseases, 2005, 11, 1322-1324.	4.3	44
101	Equine and Canine Anaplasma phagocytophilum Strains Isolated on the Island of Sardinia (Italy) Are Phylogenetically Related to Pathogenic Strains from the United States. Applied and Environmental Microbiology, 2005, 71, 6418-6422.	3.1	117
102	Mycoplasma hominis and Trichomonas vaginalis symbiosis: multiplicity of infection and transmissibility of M. hominis to human cells. Archives of Microbiology, 2001, 175, 70-74.	2.2	49
103	Host and Tissue Specificity of Trichomonas vaginalis Is Not Mediated by Its Known Adhesion Proteins. Infection and Immunity, 2000, 68, 4358-4360.	2.2	25
104	Identification ofTrichomonas vaginalisαâ€Actinin as the Most Common Immunogen Recognized by Sera of Women Exposed to the Parasite. Journal of Infectious Diseases, 1999, 180, 1727-1730.	4.0	37
105	The flagellated parasite Trichomonas vaginalis: new insights into cytopathogenicity mechanisms. Microbes and Infection, 1999, 1, 149-156.	1.9	56
106	Exploring a novel perspective on pathogenic relationships. Trends in Microbiology, 1999, 7, 96-98.	7.7	26
107	Exploring a novel perspective on pathogenic relationships: Response. Trends in Microbiology, 1999, 7, 98.	7.7	3
108	Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet, The, 1998, 352, 2022-2023.	13.7	11

#	Article	IF	CITATIONS
109	Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet, The, 1998, 352, 2023.	13.7	34
110	Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet, The, 1998, 352, 1286.	13.7	47
111	Cloning and Molecular Characterization of a cDNA Clone Coding for <i>Trichomonas vaginalis</i> Alpha-Actinin and Intracellular Localization of the Protein. Infection and Immunity, 1998, 66, 4924-4931.	2.2	39
112	Extracellular release byTrichomonas vaginalisof a NADP+dependent malic enzyme involved in pathogenicity. Microbial Pathogenesis, 1997, 23, 55-61.	2.9	21
113	Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infection and Immunity, 1997, 65, 5142-5148.	2.2	44
114	Trichomonas vaginalishaemolysis: pH regulates a contact-independent mechanism based on pore-forming proteins. Microbial Pathogenesis, 1996, 20, 109-118.	2.9	59