Abdelhameed M Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9257377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical solution of two-sided space-fractional wave equation using finite difference method. Journal of Computational and Applied Mathematics, 2011, 235, 2832-2841.	2.0	119
2	Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos, Solitons and Fractals, 2015, 73, 141-147.	5.1	66
3	An efficient method for solving fractional Hodgkin–Huxley model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1980-1984.	2.1	55
4	On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind. Journal of King Saud University - Science, 2016, 28, 41-47.	3.5	53
5	Finiteâ€ŧime stability of linear fractionalâ€order timeâ€delay systems. International Journal of Robust and Nonlinear Control, 2019, 29, 180-187.	3.7	42
6	Numerical solution of time fractional nonlinear Klein–Gordon equation using Sinc–Chebyshev collocation method. Applied Mathematics and Computation, 2017, 310, 139-148.	2.2	38
7	Finite-Time Stability for Caputo–Katugampola Fractional-Order Time-Delayed Neural Networks. Neural Processing Letters, 2019, 50, 607-621.	3.2	29
8	Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes. Chaos, Solitons and Fractals, 2019, 123, 24-34.	5.1	29
9	Finiteâ€Time Stability of Linear Caputoâ€Katugampola Fractionalâ€Order Time Delay Systems. Asian Journal of Control, 2020, 22, 297-306.	3.0	28
10	Solving Time-Fractional Order Telegraph Equation Via Sinc–Legendre Collocation Method. Mediterranean Journal of Mathematics, 2016, 13, 5119-5133.	0.8	26
11	Algorithm 927. ACM Transactions on Mathematical Software, 2013, 39, 1-12.	2.9	22
12	New Operational Matrix for Solving Multiterm Variable Order Fractional Differential Equations. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	20
13	Numerical approach for solving space fractional orderdiffusion equations using shifted Chebyshev polynomials of the fourth kind. Turkish Journal of Mathematics, 2016, 40, 1283-1297.	0.7	18
14	Improved Quasiuniform Stability for Fractional Order Neural Nets with Mixed Delay. Mathematical Problems in Engineering, 2020, 2020, 1-7.	1.1	18
15	New Spectral Second Kind Chebyshev Wavelets Scheme for Solving Systems of Integro-Differential Equations. International Journal of Applied and Computational Mathematics, 2017, 3, 333-345.	1.6	13
16	Numerical simulations for a variable order fractional cable equation. Acta Mathematica Scientia, 2018, 38, 580-590.	1.0	11
17	An accurate numerical technique for solving two-dimensional time fractional order diffusion equation. International Journal of Modelling and Simulation, 2019, 39, 214-221.	3.3	10
18	Analysis and numerical solution of the generalized proportional fractional Cauchy problem. Applied Numerical Mathematics, 2021, 167, 173-186.	2.1	9

Abdelhameed M Nagy

#	Article	IF	CITATIONS
19	A new mesh selection strategy with stiffness detection for explicit Runge–Kutta methods. Applied Mathematics and Computation, 2015, 255, 125-134.	2.2	7
20	An efficient dynamical systems method for solving singularly perturbed integral equations with noise. Computers and Mathematics With Applications, 2009, 58, 1418-1424.	2.7	5
21	Stiffness Detection Strategy for Explicit Runge Kutta Methods. AlP Conference Proceedings, 2010, , .	0.4	4
22	Non-Standard Finite Difference Schemes for Solving Variable-Order Fractional Differential Equations. Differential Equations and Dynamical Systems, 2021, 29, 623-632.	1.0	4
23	A novel operational matrix for the numerical solution of nonlinear Lane–Emden system of fractional order. Computational and Applied Mathematics, 2021, 40, 1.	2.2	4
24	Numerical solutions of fractional optimal control with Caputo–Katugampola derivative. Advances in Difference Equations, 2021, 2021, .	3.5	4
25	Combination Synchronization of Fractional Systems Involving the Caputo–Hadamard Derivative. Mathematics, 2021, 9, 2781.	2.2	4
26	On a new fractional-order Logistic model with feedback control. Applied Mathematics, 2021, 36, 390-402.	1.0	3
27	Numerical solutions for nonlinear multi-term fractional differential equations via Dickson operational matrix. International Journal of Computer Mathematics, 2022, 99, 1505-1515.	1.8	3
28	New Result for the Analysis of Katugampola Fractional-Order Systems—Application to Identification Problems. Mathematics, 2022, 10, 1814.	2.2	3
29	On the Numerical Treatment of a Coupled Nonlinear System of Fractional Differential Equations. Journal of Computational and Theoretical Nanoscience, 2017, 14, 1184-1189.	0.4	2
30	Some Weakly Singular Integral Inequalities and Their Applications to Tempered Fractional Differential Equations. Journal of Mathematics, 2022, 2022, 1-9.	1.0	2
31	Solving Volterra integro-differential equations by variable stepsize block BS methods: Properties and implementation techniques. Applied Mathematics and Computation, 2014, 239, 198-210.	2.2	1