Toni Llorente-Mirandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9257240/publications.pdf

Version: 2024-02-01

687363 1125743 13 493 13 13 citations h-index g-index papers 13 13 13 562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inorganic Arsenic Determination in Food: A Review of Analytical Proposals and Quality Assessment Over the Last Six Years. Applied Spectroscopy, 2017, 71, 25-69.	2.2	28
2	Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41. Food Chemistry, 2016, 213, 169-179.	8.2	22
3	Assessment of arsenic bioaccessibility in raw and cooked edible mushrooms by a PBET method. Food Chemistry, 2016, 194, 849-856.	8.2	53
4	Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 54-67.	2.3	15
5	Direct solid sample analysis with graphite furnace atomic absorption spectrometry—A fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood. Talanta, 2015, 134, 224-231.	5.5	26
6	Establishment of a method for determination of arsenic species in seafood by LC-ICP-MS. Food Chemistry, 2015, 173, 1073-1082.	8.2	55
7	A need for determination of arsenic species at low levels in cereal-based food and infant cereals. Validation of a method by IC–ICPMS. Food Chemistry, 2014, 147, 377-385.	8.2	43
8	Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chemistry, 2014, 158, 207-215.	8.2	41
9	A fully validated method for the determination of arsenic species in rice and infant cereal products. Pure and Applied Chemistry, 2012, 84, 225-238.	1.9	45
10	Is it possible to agree on a value for inorganic arsenic in food? The outcome of IMEP-112. Analytical and Bioanalytical Chemistry, 2012, 404, 2475-2488.	3.7	36
11	Performance of laboratories in speciation analysis in seafood – Case of methylmercury and inorganic arsenic. Food Control, 2011, 22, 1928-1934.	5.5	27
12	Determination of Water-Soluble Arsenic Compounds in Commercial Edible Seaweed by LC-ICPMS. Journal of Agricultural and Food Chemistry, 2011, 59, 12963-12968.	5.2	50
13	Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurrence of arsenobetaine. Chemosphere, 2010, 81, 867-875.	8.2	52