
Gregg Duester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9257210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards a Better Vision of Retinoic Acid Signaling during Eye Development. Cells, 2022, 11, 322.	1.8	15
2	Synaptic Plasticity is Altered by Treatment with Pharmacological Levels of Retinoic Acid Acting Nongenomically However Endogenous Retinoic Acid has not been shown to have Nongenomic Activity Journal of Neurological Disorders, 2022, 10, .	0.1	1
3	Retinoic acid, RARs and early development. Journal of Molecular Endocrinology, 2022, 69, T59-T67.	1.1	15
4	Role of Retinoic Acid Signaling, FGF Signaling and Meis Genes in Control of Limb Development. Biomolecules, 2021, 11, 80.	1.8	10
5	Paracardial fat remodeling affects systemic metabolism through alcohol dehydrogenase 1. Journal of Clinical Investigation, 2021, 131, .	3.9	11
6	Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations. Nature Communications, 2020, 11, 63.	5.8	43
7	Roles of Two Major Alcohol Dehydrogenases, ADH1 (Class I) and ADH3 (Class III), in the Adaptive Enhancement of Alcohol Metabolism Induced by Chronic Alcohol Consumption in Mice. Alcohol and Alcoholism, 2020, 55, 11-19.	0.9	8
8	Discovery of genes required for body axis and limb formation by global identification of retinoic acid–regulated epigenetic marks. PLoS Biology, 2020, 18, e3000719.	2.6	24
9	Retinoic acid signaling pathways. Development (Cambridge), 2019, 146, .	1.2	231
10	The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nature Communications, 2019, 10, 1796.	5.8	38
11	Knocking Out Enhancers to Enhance Epigenetic Research. Trends in Genetics, 2019, 35, 89.	2.9	9
12	N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nature Neuroscience, 2018, 21, 195-206.	7.1	317
13	Mouse but not zebrafish requires retinoic acid for control of neuromesodermal progenitors and body axis extension. Developmental Biology, 2018, 441, 127-131.	0.9	23
14	Genomic Knockout of Two Presumed Forelimb Tbx5 Enhancers Reveals They Are Nonessential for Limb Development. Cell Reports, 2018, 23, 3146-3151.	2.9	37
15	Id genes are essential for early heart formation. Genes and Development, 2017, 31, 1325-1338.	2.7	64
16	Retinoic acid's reproducible future. Science, 2017, 358, 1395-1395.	6.0	5
17	Endogenous retinoic acid signaling is required for maintenance and regeneration of cornea. Experimental Eye Research, 2017, 154, 190-195.	1.2	27
18	Nuclear receptor corepressors Ncor1 and Ncor2 (Smrt) are required for retinoic acid-dependent repression of Fgf8 during somitogenesis. Developmental Biology, 2016, 418, 204-215.	0.9	42

#	Article	IF	CITATIONS
19	Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. Biology Open, 2016, 5, 1821-1833.	0.6	37
20	Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nature Reviews Molecular Cell Biology, 2015, 16, 110-123.	16.1	459
21	Retinoic acid-independent expression of Meis2 during autopod patterning in the developing bat and mouse limb. EvoDevo, 2015, 6, 6.	1.3	8
22	<i>Wnt8a</i> and <i>Wnt3a</i> cooperate in the axial stem cell niche to promote mammalian body axis extension. Developmental Dynamics, 2015, 244, 797-807.	0.8	36
23	Retinoic Acid Activity in Undifferentiated Neural Progenitors Is Sufficient to Fulfill Its Role in Restricting Fgf8 Expression for Somitogenesis. PLoS ONE, 2015, 10, e0137894.	1.1	44
24	Retinoic acid controls body axis extension by directly repressing <i>Fgf8</i> transcription. Development (Cambridge), 2014, 141, 2972-2977.	1.2	112
25	An Evolutionarily Conserved Long Noncoding RNA TUNA Controls Pluripotency and Neural Lineage Commitment. Molecular Cell, 2014, 53, 1005-1019.	4.5	364
26	The Xenopus alcohol dehydrogenase gene family: characterization and comparative analysis incorporating amphibian and reptilian genomes. BMC Genomics, 2014, 15, 216.	1.2	5
27	A regulatory network controls nephrocan expression and midgut patterning. Development (Cambridge), 2014, 141, 3772-3781.	1.2	6
28	Alcohol dehydrogenase III exacerbates liver fibrosis by enhancing stellate cell activation and suppressing natural killer cells in mice. Hepatology, 2014, 60, 1044-1053.	3.6	69
29	Investigation of retinoic acid function during embryonic brain development using retinaldehydeâ€rescued Rdh10 knockout mice. Developmental Dynamics, 2013, 242, 1056-1065.	0.8	30
30	Retinoid signaling in control of progenitor cell differentiation during mouse development. Seminars in Cell and Developmental Biology, 2013, 24, 694-700.	2.3	49
31	Retinaldehyde dehydrogenase enzymes regulate colon enteric nervous system structure and function. Developmental Biology, 2013, 381, 28-37.	0.9	21
32	Antagonism between Retinoic Acid and Fibroblast Growth Factor Signaling during Limb Development. Cell Reports, 2013, 3, 1503-1511.	2.9	98
33	Autocrine Function of Aldehyde Dehydrogenase 1 as a Determinant of Diet- and Sex-Specific Differences in Visceral Adiposity. Diabetes, 2013, 62, 124-136.	0.3	51
34	Resolving Molecular Events in the Regulation of Meiosis in Male and Female Germ Cells. Science Signaling, 2013, 6, pe25.	1.6	24
35	Retinaldehyde Dehydrogenase 1 Coordinates Hepatic Gluconeogenesis and Lipid Metabolism. Endocrinology, 2012, 153, 3089-3099.	1.4	94
36	Whole-genome microRNA screening identifies <i>let-7</i> and <i>mir-18</i> as regulators of germ layer formation during early embryogenesis. Genes and Development, 2012, 26, 2567-2579.	2.7	59

#	Article	IF	CITATIONS
37	CD11b ⁺ Gr1 ⁺ bone marrow cells ameliorate liver fibrosis by producing interleukin-10 in mice. Hepatology, 2012, 56, 1902-1912.	3.6	65
38	Alcohol and aldehyde dehydrogenases: Retinoid metabolic effects in mouse knockout models. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 198-205.	1.2	141
39	Adh1 and Adh1/4 knockout mice as possible rodent models for presymptomatic Parkinson's disease. Behavioural Brain Research, 2012, 227, 252-257.	1.2	13
40	Aldehyde dehydrogenases are regulators of hematopoietic stem cell numbers and B-cell development. Experimental Hematology, 2012, 40, 318-329.e2.	0.2	42
41	The prolonged survival of fibroblasts with forced lipid catabolism in visceral fat following encapsulation in alginate-poly-l-lysine. Biomaterials, 2012, 33, 5638-5649.	5.7	15
42	Retinaldehydeâ€Mediated Lipolysis Underlay Sexual Dimorphism in Visceral Obesity in Mice. FASEB Journal, 2012, 26, 649.3.	0.2	0
43	Highâ€fat dietâ€dependent increase in plasma immunoglobulin levels are repressed by aldehyde dehydrogenase1 a1. FASEB Journal, 2012, 26, lb454.	0.2	0
44	Retinoic Acid Antagonism of Fgf8 during Forelimb Development. FASEB Journal, 2012, 26, 339.5.	0.2	0
45	Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signalling. Nature Communications, 2011, 2, 151.	5.8	124
46	SnapShot: Retinoic Acid Signaling. Cell, 2011, 147, 1422-1422.e1.	13.5	33
47	Modeling Parkinson's disease genetics: Altered function of the dopamine system in Adh4 knockout mice. Behavioural Brain Research, 2011, 217, 439-445.	1.2	12
48	Retinoic acid influences neuronal migration from the ganglionic eminence to the cerebral cortex. Journal of Neurochemistry, 2011, 119, 723-735.	2.1	34
49	Functional significance of aldehyde dehydrogenase ALDH1A1 to the nigrostriatal dopamine system. Brain Research, 2011, 1408, 81-87.	1.1	53
50	<i>Rdh10</i> mutants deficient in limb field retinoic acid signaling exhibit normal limb patterning but display interdigital webbing. Developmental Dynamics, 2011, 240, 1142-1150.	0.8	56
51	Uncoupling of retinoic acid signaling from tailbud development before termination of body axis extension. Genesis, 2011, 49, 776-783.	0.8	32
52	Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial <i>lgf2</i> . Development (Cambridge), 2011, 138, 139-148.	1.2	87
53	Concerted Action of Aldehyde Dehydrogenases Influences Depot-Specific Fat Formation. Molecular Endocrinology, 2011, 25, 799-809.	3.7	82
54	Retinoic Acid Functions as a Key GABAergic Differentiation Signal in the Basal Ganglia. PLoS Biology, 2011, 9, e1000609.	2.6	83

# /	Article	IF	CITATIONS
	NSAID Sulindac and Its Analog Bind RXRα and Inhibit RXRα-Dependent AKT Signaling. Cancer Cell, 2010, 17, 560-573.	7.7	112
56 [Retinoic acid controls expression of tissue remodeling genes <i>Hmgn1</i> and <i>Fgf18</i> at the digit–interdigit junction. Developmental Dynamics, 2010, 239, 665-671.	0.8	33
	Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling. Neural Development, 2010, 5, 21.	1.1	28
	Non-cell-autonomous retinoid signaling is crucial for renal development. Development (Cambridge), 2010, 137, 283-292.	1.2	149
- 59	Transcriptional Regulation of Cannabinoid Receptor-1 Expression in the Liver by Retinoic Acid Acting via Retinoic Acid Receptor-γ. Journal of Biological Chemistry, 2010, 285, 19002-19011.	1.6	91
	Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2. Developmental Biology, 2010, 340, 67-74.	0.9	82
	Retinoic Acid Promotes Limb Induction through Effects on Body Axis Extension but Is Unnecessary for Limb Patterning. Current Biology, 2009, 19, 1050-1057.	1.8	150
	Effect of retinoic acid signaling on Wnt/β-catenin and FGF signaling during body axis extension. Gene Expression Patterns, 2009, 9, 430-435.	0.3	53
63	Keeping an eye on retinoic acid signaling during eye development. Chemico-Biological Interactions, 2009, 178, 178-181.	1.7	69
	Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems. Blood, 2009, 113, 1670-1680.	0.6	102
	Medium- and short-chain dehydrogenase/reductase gene and protein families. Cellular and Molecular Life Sciences, 2008, 65, 3936-3949.	2.4	144
66 (Tissue Expression Pattern of Class II and Class V Genes Found in the Adh Complex on Mouse Chromosome 3. Biochemical Genetics, 2008, 46, 685-695.	0.8	2
67	Retinoic acid controls heart anteroposterior patterning by downâ€regulating <i>Isl1</i> through the <i>Fgf8</i> pathway. Developmental Dynamics, 2008, 237, 1627-1635.	0.8	151
68 I	Retinoic Acid Synthesis and Signaling during Early Organogenesis. Cell, 2008, 134, 921-931.	13.5	889
69	Retinoic acid gives limb development a hand. FASEB Journal, 2008, 22, 230.3.	0.2	1
	Multiple and Additive Functions of ALDH3A1 and ALDH1A1. Journal of Biological Chemistry, 2007, 282, 25668-25676.	1.6	153
	Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone. Developmental Biology, 2007, 303, 601-610.	0.9	98

 $_{72}$ Identification of 3-deoxyglucosone dehydrogenase as aldehyde dehydrogenase 1A1 (retinaldehyde) Tj ETQq0 0 0 rgBT /Overlqck 10 Tf 5

#	Article	IF	CITATIONS
73	Retinoic acid regulation of the somitogenesis clock. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 84-92.	3.6	63
74	Retinaldehyde represses adipogenesis and diet-induced obesity. Nature Medicine, 2007, 13, 695-702.	15.2	346
75	In vivo contribution of Class III alcohol dehydrogenase (ADH3) to alcohol metabolism through activation by cytoplasmic solution hydrophobicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 276-283.	1.8	31
76	Dose-Dependent Interaction of Tbx1 and Crkl and Locally Aberrant RA Signaling in a Model of del22q11 Syndrome. Developmental Cell, 2006, 10, 81-92.	3.1	186
77	Retinoic-acid signalling in node ectoderm and posterior neural plate directs left–right patterning of somitic mesoderm. Nature Cell Biology, 2006, 8, 271-277.	4.6	152
78	Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning. Development (Cambridge), 2006, 133, 1901-1910.	1.2	191
79	Retinoic acid generated byRaldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Developmental Dynamics, 2005, 232, 950-957.	0.8	181
80	ï‰-Oxidation of 20-Hydroxyeicosatetraenoic Acid (20-HETE) in Cerebral Microvascular Smooth Muscle and Endothelium by Alcohol Dehydrogenase 4. Journal of Biological Chemistry, 2005, 280, 33157-33164.	1.6	43
81	Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development (Cambridge), 2005, 132, 2611-2622.	1.2	154
82	Requirement of mesodermal retinoic acid generated by Raldh2 for posterior neural transformation. Mechanisms of Development, 2005, 122, 145-155.	1.7	98
83	Retinoic Acid Synthesis Controlled by Raldh2 Is Required Early for Limb Bud Initiation and Then Later as a Proximodistal Signal during Apical Ectodermal Ridge Formation. Journal of Biological Chemistry, 2004, 279, 26698-26706.	1.6	87
84	The specificity of alcohol dehydrogenase with cis-retinoids. Activity with 11-cis-retinol and localization in retina. FEBS Journal, 2004, 271, 1660-1670.	0.2	24
85	Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation. Developmental Dynamics, 2004, 231, 270-277.	0.8	89
86	Opposing actions of cellular retinol-binding protein and alcohol dehydrogenase control the balance between retinol storage and degradation. Biochemical Journal, 2004, 383, 295-302.	1.7	40
87	Enzymatic characterization of recombinant mouse retinal dehydrogenase type 1. Biochemical Pharmacology, 2003, 65, 1685-1690.	2.0	26
88	Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid. Chemico-Biological Interactions, 2003, 143-144, 201-210.	1.7	192
89	Distribution of class I, III and IV alcohol dehydrogenase mRNAs in the adult rat, mouse and human brain. FEBS Journal, 2003, 270, 1316-1326.	0.2	78
90	Expression, localization and potential physiological significance of alcohol dehydrogenase in the gastrointestinal tract. FEBS Journal, 2003, 270, 2652-2662.	0.2	48

#	Article	IF	CITATIONS
91	Patterning of forelimb bud myogenic precursor cells requires retinoic acid signaling initiated by Raldh2. Developmental Biology, 2003, 264, 191-201.	0.9	19
92	Genetic Evidence That Retinaldehyde Dehydrogenase Raldh1 (Aldh1a1) Functions Downstream of Alcohol Dehydrogenase Adh1 in Metabolism of Retinol to Retinoic Acid. Journal of Biological Chemistry, 2003, 278, 36085-36090.	1.6	120
93	Targeted Disruption of Aldh1a1 (Raldh1) Provides Evidence for a Complex Mechanism of Retinoic Acid Synthesis in the Developing Retina. Molecular and Cellular Biology, 2003, 23, 4637-4648.	1.1	213
94	Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7135-7140.	3.3	203
95	Distinct Retinoid Metabolic Functions for Alcohol Dehydrogenase Genes Adh1 and Adh4 in Protection against Vitamin A Toxicity or Deficiency Revealed in Double Null Mutant Mice. Journal of Biological Chemistry, 2002, 277, 13804-13811.	1.6	84
96	Kinetic Mechanism of Human Class IV Alcohol Dehydrogenase Functioning as Retinol Dehydrogenase. Journal of Biological Chemistry, 2002, 277, 25209-25216.	1.6	37
97	Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5337-5342.	3.3	127
98	Retinol/Ethanol Drug Interaction during Acute Alcohol Intoxication in Mice Involves Inhibition of Retinol Metabolism to Retinoic Acid by Alcohol Dehydrogenase. Journal of Biological Chemistry, 2002, 277, 22553-22557.	1.6	58
99	Distal and proximal cis -linked sequences are needed for the total expression phenotype of the mouse alcohol dehydrogenase 1 (Adh1) gene. Gene, 2002, 291, 259-270.	1.0	7
100	Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates. BBA - Proteins and Proteomics, 2002, 1596, 156-162.	2.1	56
101	Retinoic acid synthesis in the prevertebrate amphioxus involves retinol oxidation. Development Genes and Evolution, 2002, 212, 388-393.	0.4	21
102	Organization of six functional mouse alcohol dehydrogenase genes on two overlapping bacterial artificial chromosomes. FEBS Journal, 2002, 269, 224-232.	0.2	31
103	Excessive vitamin A toxicity in mice genetically deficient in either alcohol dehydrogenase Adh1 or Adh3. FEBS Journal, 2002, 269, 2607-2612.	0.2	48
104	Novel retinoic acid generating activities in the neural tube and heart identified by conditional rescue of <i>Raldh2</i> null mutant mice. Development (Cambridge), 2002, 129, 2271-2282.	1.2	217
105	Novel retinoic acid generating activities in the neural tube and heart identified by conditional rescue of Raldh2 null mutant mice. Development (Cambridge), 2002, 129, 2271-82.	1.2	90
106	Molecular analysis of genetic differences among inbred mouse strains controlling tissue expression pattern of alcohol dehydrogenase 4. Gene, 2001, 267, 145-156.	1.0	3
107	Genetic dissection of retinoid dehydrogenases. Chemico-Biological Interactions, 2001, 130-132, 469-480.	1.7	68
108	Families of retinoid dehydrogenases regulating vitamin A function. FEBS Journal, 2000, 267, 4315-4324.	0.2	512

#	Article	IF	CITATIONS
109	RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development. Mechanisms of Development, 2000, 97, 227-230.	1.7	146
110	Metabolic Deficiencies in Alcohol Dehydrogenase Adh1,Adh3, and Adh4 Null Mutant Mice. Journal of Biological Chemistry, 1999, 274, 16796-16801.	1.6	166
111	Molecular docking studies on interaction of diverse retinol structures with human alcohol dehydrogenases predict a broad role in retinoid ligand synthesis. BBA - Proteins and Proteomics, 1999, 1432, 239-250.	2.1	13
112	Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochemical Pharmacology, 1999, 58, 389-395.	2.0	222
113	Stimulation of premature retinoic acid synthesis in Xenopus embryos following premature expression of aldehyde dehydrogenase ALDH1. FEBS Journal, 1999, 260, 227-234.	0.2	38
114	Retinoic acid biosynthetic enzyme ALDH1 localizes in a subset of retinoid-dependent tissues duringXenopus development. , 1999, 215, 264-272.		21
115	Impaired retinol utilization inAdh4 alcohol dehydrogenase mutant mice. , 1999, 25, 1-10.		63
116	Distinct functions forAldh1 andRaldh2 in the control of ligand production for embryonic retinoid signaling pathways. , 1999, 25, 353-364.		138
117	Molecular analysis of two closely related mouse aldehyde dehydrogenase genes: identification of a role for Aldh1, but not Aldh-pb, in the biosynthesis of retinoic acid. Biochemical Journal, 1999, 339, 387.	1.7	19
118	Molecular analysis of two closely related mouse aldehyde dehydrogenase genes: identification of a role for Aldh1, but not Aldh-pb, in the biosynthesis of retinoic acid. Biochemical Journal, 1999, 339, 387-395.	1.7	46
119	Function of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Gene Families in Retinoid Signaling. Advances in Experimental Medicine and Biology, 1999, 463, 311-319.	0.8	14
120	ADH4-lacZ Transgenic Mouse Reveals Alcohol Dehydrogenase Localization in Embryonic Midbrain/ Hindbrain, Otic Vesicles, and Mesencephalic, Trigeminal, Facial, and Olfactory Neural Crest. Alcoholism: Clinical and Experimental Research, 1998, 22, 1607-1613.	1.4	21
121	ADH1 and ADH4 alcohol/retinol dehydrogenases in the developing adrenal blastema provide evidence for embryonic retinoid endocrine function. Developmental Dynamics, 1998, 213, 114-120.	0.8	15
122	Alcohol dehydrogenases inXenopus development: Conserved expression of ADH1 and ADH4 in epithelial retinoid target tissues. Developmental Dynamics, 1998, 213, 261-270.	0.8	17
123	Alcohol Dehydrogenase as a Critical Mediator of Retinoic Acid Synthesis from Vitamin A in the Mouse Embryo ,. Journal of Nutrition, 1998, 128, 459S-462S.	1.3	83
124	Localization of Class I and Class IV Alcohol Dehydrogenases in Mouse Testis and Epididymis: Potential Retinol Dehydrogenases for Endogenous Retinoic Acid Synthesis1. Biology of Reproduction, 1997, 56, 102-109.	1.2	53
125	Retinoic Acid and Alcohol/Retinol Dehydrogenase in the Mouse Adrenal Gland: A Potential Endocrine Source of Retinoic Acid during Development*. Endocrinology, 1997, 138, 3035-3041.	1.4	27

Gene Structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 6 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse Class IV Alcohol Dehydrogenase (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse (Retinol) Tj ETQq0 0 0 rg BT / Overlock 10 Tf 50 for a structure and Promoter for Adh3 Encoding Mouse (Retinol) Tj ETQq

#	Article	IF	CITATIONS
127	Regional Restriction of Alcohol/Retinol Dehydrogenases along the Mouse Gastrointestinal Epithelium. Alcoholism: Clinical and Experimental Research, 1997, 21, 1484-1490.	1.4	69
128	Class IV alcohol/retinol dehydrogenase localization in epidermal basal layer: Potential site of retinoic acid synthesis during skin development. , 1997, 208, 447-453.		39
129	Initiation of retinoid signaling in primitive streak mouse embryos: Spatiotemporal expression patterns of receptors and metabolic enzymes for ligand synthesis. , 1997, 208, 536-543.		65
130	Initiation of retinoid signaling in primitive streak mouse embryos: Spatiotemporal expression patterns of receptors and metabolic enzymes for ligand synthesis. , 1997, 208, 536.		3
131	Involvement of Alcohol Dehydrogenase, Short-Chain Dehydrogenase/Reductase, Aldehyde Dehydrogenase, and Cytochrome P450 in the Control of Retinoid Signaling by Activation of Retinoic Acid Synthesisâ€. Biochemistry, 1996, 35, 12221-12227.	1.2	248
132	Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB Journal, 1996, 10, 1050-1057.	0.2	165
133	Retinoic Acid Synthesis in Mouse Embryos during Gastrulation and Craniofacial Development Linked to Class IV Alcohol Dehydrogenase Gene Expression. Journal of Biological Chemistry, 1996, 271, 9526-9534.	1.6	157
134	Characterization of the Functional Gene Encoding Mouse Class III Alcohol Dehydrogenase (Glutathione-Dependent Formaldehyde Dehydrogenase) and An Unexpressed Processed Pseudogene with An Intact Open Reading Frame. FEBS Journal, 1996, 237, 496-504.	0.2	14
135	Expression Patterns of Class I and Class IV Alcohol Dehydrogenase Genes in Developing Epithelia Suggest a Role for Alcohol Dehydrogenase in Local Retinoic Acid Synthesis. Alcoholism: Clinical and Experimental Research, 1996, 20, 1050-1064.	1.4	80
136	Evidence that Class IV Alcohol Dehydrogenase May Function in Embryonic Retinoic Acid Synthesis. Advances in Experimental Medicine and Biology, 1996, 414, 357-364.	0.8	18
137	Genomic Structure and Expression of the ADH7 Gene Encoding Human Class IV Alcohol Dehydrogenase, the Form Most Efficient for Retinol Metabolism in Vitro. Journal of Biological Chemistry, 1995, 270, 4305-4311.	1.6	35
138	Cloning of the Mouse Class IV Alcohol Dehydrogenase (Retinol Dehydrogenase) cDNA and Tissue-specific Expression Patterns of the Murine ADH Gene Family. Journal of Biological Chemistry, 1995, 270, 10868-10877.	1.6	73
139	Class I and Class IV Alcohol Dehydrogenase (Retinol Dehydrogenase) Gene Expression in Mouse Embryos. Advances in Experimental Medicine and Biology, 1995, 372, 301-313.	0.8	11
140	Involvement of Alcohol-Metabolizing Enzymes in Retinoic Acid Synthesis and Inhibition by Ethanol. , 1995, , 75-95.		1
141	Retinoids and the alcohol dehydrogenase gene family. , 1994, 71, 279-290.		12
142	DNA Elements Mediating Retinoid and Thyroid Hormone Regulation of Alcohol Dehydrogenase Gene Expression. Advances in Experimental Medicine and Biology, 1993, 328, 571-580.	0.8	5
143	A Hypothetical Mechanism for Fetal Alcohol Syndrome Involving Ethanol Inhibition of Retinoic Acid Synthesis at the Alcohol Dehydrogenase Step. Alcoholism: Clinical and Experimental Research, 1991, 15, 568-572.	1.4	181

144 Human Liver Alcohol Dehydrogenase Gene Expression. , 1991, , 375-402.

9

#	Article	IF	CITATIONS
145	A hormone response element upstream from the human alcohol dehydrogenase gene ADH2 consists of three tandem glucocorticoid receptor binding sites. Gene, 1990, 91, 233-240.	1.0	27
146	Promoters for the human alcohol dehydrogenases genes ADH1, ADH2, and ADH3: interaction of CCAAT/enhancer-binding protein with elements flanking the ADH2 TATA box. Gene, 1990, 90, 271-279.	1.0	48
147	Androgen induction of alcohol dehydrogenase in mouse kidney. Studies with a cDNA probe confirmed by nucleotide sequence analysis. Gene, 1986, 41, 217-224.	1.0	34
148	Intron-dependent evolution of the nucleotide-binding domains within alcohol dehydrogenase and related enzymes. Nucleic Acids Research, 1986, 14, 1931-1941.	6.5	51
149	Multiple mRNAs for human alcohol dehydrogenase (ADH): developmental and tissue specific differences. Nucleic Acids Research, 1986, 14, 3911-3926.	6.5	39
150	Molecular genetic analysis of human alcohol dehydrogenase. Alcohol, 1985, 2, 53-56.	0.8	16
151	Molecular cloning and characterization of a cDNA for the beta subunit of human alcohol dehydrogenase Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 4055-4059.	3.3	51
152	Fusion of the Escherichia coli tRNALeu1 promoter to the galK gene: Analysis of sequences necessary for growth-rate-dependent regulation. Cell, 1982, 30, 855-864.	13.5	49
153	Nucleotide sequence of an Escherichia coli tRNA (Leu 1) operon and identification of the transcription promoter signal. Nucleic Acids Research, 1981, 9, 2121-2140.	6.5	49
154	The distal end of the ribosomal RNA operon rrnD of Eschenchia coli contains a tRNA1thrgene, two 5S rRNA genes and a transcription terminator. Nucleic Acids Research, 1980, 8, 3793-3808.	6.5	67
155	Retinoic Acid and Alcohol/Retinol Dehydrogenase in the Mouse Adrenal Gland: A Potential Endocrine Source of Retinoic Acid during Development. , 0, .		12
156	Pharmacological retinoic acid alters limb patterning during regeneration but endogenous retinoic acid is not required. Regenerative Medicine, 0, , .	0.8	0